action_spawn.Rd
Add spawning to a g3 model
g3a_spawn_recruitment_fecundity(
p0 = g3_parameterized('spawn.p0', value = 1, by_stock = by_stock),
p1 = g3_parameterized('spawn.p1', value = 1, by_stock = by_stock),
p2 = g3_parameterized('spawn.p2', value = 1, by_stock = by_stock),
p3 = g3_parameterized('spawn.p3', value = 1, by_stock = by_stock),
p4 = g3_parameterized('spawn.p4', value = 1, by_stock = by_stock),
by_stock = TRUE )
g3a_spawn_recruitment_simplessb(
mu = g3_parameterized('spawn.mu', by_stock = by_stock),
by_stock = TRUE )
g3a_spawn_recruitment_ricker(
mu = g3_parameterized('spawn.mu', by_stock = by_stock),
lambda = g3_parameterized('spawn.lambda', by_stock = by_stock),
by_stock = TRUE )
g3a_spawn_recruitment_bevertonholt(
mu = g3_parameterized('spawn.mu', by_stock = by_stock),
lambda = g3_parameterized('spawn.lambda', by_stock = by_stock),
by_stock = TRUE )
g3a_spawn_recruitment_bevertonholt_ss3(
# Steepness parameter
h = g3_parameterized('spawn.h', lower = 0.1, upper = 1, value = 0.5,
by_stock = by_stock ),
# Recruitment deviates
R = g3_parameterized('spawn.R', by_year = TRUE, exponentiate = TRUE,
# Unfished equilibrium recruitment
scale = "spawn.R0",
by_stock = by_stock),
# Unfished equilibrium spawning biomass (corresponding to R0)
B0 = g3_parameterized('spawn.B0', by_stock = by_stock),
by_stock = TRUE )
g3a_spawn_recruitment_hockeystick(
r0 = g3_parameterized('spawn.r0', by_stock = by_stock),
blim = g3_parameterized('spawn.blim', value = 1, by_stock = by_stock),
by_stock = TRUE )
g3a_spawn(
stock,
recruitment_f,
proportion_f = 1,
mortality_f = 0,
weightloss_f = 0,
weightloss_args = list(),
output_stocks = list(),
output_ratios = rep(1 / length(output_stocks), times = length(output_stocks)),
mean_f = g3a_renewal_vonb_t0(by_stock = by_stock),
stddev_f = g3_parameterized('rec.sd', value = 10, by_stock = by_stock),
alpha_f = g3_parameterized('walpha', by_stock = wgt_by_stock),
beta_f = g3_parameterized('wbeta', by_stock = wgt_by_stock),
by_stock = TRUE,
wgt_by_stock = TRUE,
run_step = NULL,
run_f = ~TRUE,
run_at = g3_action_order$spawn,
recruit_at = g3_action_order$renewal)
Substituted into g3a_spawn_recruitment_fecundity
formula, see below.
Substituted into g3a_spawn_recruitment_*
formula, see below.
The mature g3_stock
that will spawn in this action.
A list of formula generated by one of the g3a_spawn_recruitment_*
functions, containing
Formula run for each subset of stock
Final formula for calculating number of recruits for spawning action
formula generated by one of the g3_suitability_* functions, describing the proportion of stock that will spawn at this timestep.
formula generated by one of the g3_suitability_* functions, describing the proportion of spawning stock that will die during spawning.
formula generated by one of the g3_suitability_* functions, describing the overall weight loss during spawning.
DEPRECATED: Use weightloss_args for new models.
list of options to pass to g3a_weightloss
, e.g. rel_loss & abs_loss.
If not empty, a weightloss action will be included as part of spawning.
List of g3_stock
s that will be spawned into.
Vector of proportions for how to distribute into output_stocks, summing to 1, default evenly spread.
formula substituted into stock structure calculations, see g3a_renewal_normalparam for details.
Which step to perform renewal in, or NULL
for continuous spawning.
Adds cur_step == (run_step)
into default run_f.
formula specifying a condition for running this action, default always runs.
Integer order that spawning actions will be run within model, see g3_action_order
.
Integer order that recruitment from spawning will be run within model, see g3_action_order
.
Controls how parameters are grouped, see g3_parameterized
To restrict spawning to a particular step in a year, or a particular area, use run_f. For example:
cur_step == 1
Spawning will happen on first step of every year
cur_step == 1 && cur_year >= 1990
Spawning will happen on first step of every year after 1990
cur_step == 2 && area = 1
Spawning will happen on second step of every year, in the first area
The action will define the following stock instance variables for each given stock and output_stock:
Proportion of (stock) that are spawning in this spawning event
Numbers of (stock) that are spawning in this spawning event
Numbers of (output_stock) that will be produced in this spawning event
A pair of formula objects: $$ S = l ^{p_{1}} a^{p_{2}} (p N_{al})^{p_{3}} W_{al}^{p_{4}} $$ $$ R = p_{0} S $$
Number of parent stock
Weight of parent stock
Proportion of parent stock spawning, from proportion_f
Arguments provided to function
A pair of formula objects: $$ S = N_{al} p W_{al} $$ $$ R = \mu S $$
Number of parent stock
Weight of parent stock
Proportion of parent stock spawning, from proportion_f
Argument provided to function
A pair of formula objects: $$ S = N_{al} p W_{al} $$ $$ R = \mu S e^{-\lambda S} $$
Number of parent stock
Weight of parent stock
Proportion of parent stock spawning, from proportion_f
Argument provided to function
Argument provided to function
A pair of formula objects: $$ S = N_{al} p W_{al} $$ $$ R = \frac{\mu S}{\lambda + S} $$
Number of parent stock
Weight of parent stock
Proportion of parent stock spawning, from proportion_f
Argument provided to function
Argument provided to function
A modified beverton-holt implementation from SS3 returning a pair of formula objects: $$ S = N_{al} p W_{al} $$ $$ R = \frac{ 4 h R_0 s R }{ B_0 (1 - h) + S (5 h - 1) } $$
Number of parent stock
Weight of parent stock
Proportion of parent stock spawning, from proportion_f
Steepness parameter, by default provided by the srr_h
parameter
Unfished equilibrium recruitment, by default provided by the R0
parameter
Recruitment deviates, by default provided by the R
parameter table
Unfished equilibrium spawning biomass (corresponding to R0), by default provided by the B0
parameter
Argument provided to function
A pair of formula objects: $$ S = N_{al} p W_{al} $$ $$ R = R_0 \min{( S / B_{lim}, 1)} $$
Number of parent stock
Weight of parent stock
Proportion of parent stock spawning, from proportion_f
Argument r0
provided to function
Argument blim
provided to function
NB: This formula is differentiable, despite using min()
in the
definition above.
An action (i.e. list of formula objects) that will, for the given stock...
Use proportion_f to calculate the total parent stock that will spawn
Use recruitment_f to derive the total newly spawned stock
Apply weightloss and mortality_f to the parent stock
... then, at recruitment stage ...
Recruit evenly into output_stocks, using mean_f, stddev_f, alpha_f, beta_f as-per g3a_renewal_normalparam
ling_imm <- g3_stock(c('ling', maturity = 'imm'), seq(20, 156, 4)) |> g3s_age(0, 10)
ling_mat <- g3_stock(c('ling', maturity = 'mat'), seq(20, 156, 4)) |> g3s_age(3, 10)
actions <- list(
g3a_time(1990, 1994, c(6, 6)),
g3a_initialconditions_normalcv(ling_imm),
g3a_initialconditions_normalcv(ling_mat),
g3a_age(ling_imm),
g3a_age(ling_mat),
g3a_spawn(
# Spawn from ling_mat
ling_mat,
# Use Ricker Recruitment Function to calculate # of recruits from total biomass
recruitment_f = g3a_spawn_recruitment_ricker(),
# Proportion of ling_mat spawning exponential relationship based on length
proportion_f = g3_suitability_exponentiall50(
alpha = g3_parameterized("spawn.prop.alpha", value = 4, scale = -1),
l50 = g3_parameterized("spawn.prop.l50", value = 60)),
# Proportion of ling_mat dying during spawning linear relationship to length
mortality_f = g3_suitability_straightline(
alpha = g3_parameterized("spawn.mort.alpha"),
beta = g3_parameterized("spawn.mort.beta")),
# Weight of spawning ling_imm should reduce by a fixed absolute amount (see g3a_weightloss)
weightloss_args = list( abs_loss = g3_parameterized("spawn.weightloss", value = 0.1) ),
# Spawn into ling_imm
output_stocks = list(ling_imm),
# Spawning should happen on the first step of every year
run_f = ~cur_step==1 ),
NULL )
model_fn <- g3_to_r(c(actions,
g3a_report_detail(actions),
g3a_report_history(actions, "__spawningnum$|__offspringnum$") ))
attr(model_fn, "parameter_template") |>
# g3a_initialconditions_normalcv()
g3_init_val("*.Linf", 50) |>
g3_init_val("*.t0", -1.4) |>
g3_init_val("*.walpha", 0.1) |>
g3_init_val("*.wbeta", 1) |>
# g3a_spawn_recruitment_ricker()
g3_init_val("*.spawn.mu", 1e6) |>
g3_init_val("*.spawn.lambda", 30) |>
identity() -> params
r <- attributes(model_fn(params))
colSums(r$dstart_ling_imm__num)
#> time
#> age 1990-01 1990-02 1991-01 1991-02 1992-01 1992-02 1993-01 1993-02 1994-01
#> age0 10000 10000 0 0 0 0 0 0 0
#> age1 10000 10000 10000 10000 0 0 0 0 0
#> age2 10000 10000 10000 10000 10000 10000 0 0 0
#> age3 10000 10000 10000 10000 10000 10000 10000 10000 0
#> age4 10000 10000 10000 10000 10000 10000 10000 10000 10000
#> age5 10000 10000 10000 10000 10000 10000 10000 10000 10000
#> age6 10000 10000 10000 10000 10000 10000 10000 10000 10000
#> age7 10000 10000 10000 10000 10000 10000 10000 10000 10000
#> age8 10000 10000 10000 10000 10000 10000 10000 10000 10000
#> age9 10000 10000 10000 10000 10000 10000 10000 10000 10000
#> age10 10000 10000 20000 20000 30000 30000 40000 40000 50000
#> time
#> age 1994-02
#> age0 0
#> age1 0
#> age2 0
#> age3 0
#> age4 10000
#> age5 10000
#> age6 10000
#> age7 10000
#> age8 10000
#> age9 10000
#> age10 50000
colSums(r$dstart_ling_mat__wgt)
#> time
#> age 1990-01 1990-02 1991-01 1991-02 1992-01 1992-02 1993-01 1993-02
#> age3 315 66.41122 66.41122 0.00000 0.00000 0.00000 0.00000 0.00000
#> age4 315 67.75073 66.41122 64.24502 0.00000 0.00000 0.00000 0.00000
#> age5 315 68.61062 67.75073 64.59135 64.24502 62.90600 0.00000 0.00000
#> age6 315 68.97281 68.61062 65.18702 64.59135 62.84557 62.90600 61.74642
#> age7 315 69.11103 68.97281 65.50674 65.18702 63.15756 62.84557 61.59535
#> age8 315 69.16247 69.11103 65.63896 65.50674 63.37422 63.15756 61.74004
#> age9 315 69.18147 69.16247 65.68958 65.63896 63.47144 63.37422 61.87163
#> age10 315 69.18846 67.91383 66.01110 65.57397 64.29601 63.98007 62.88019
#> time
#> age 1994-01 1994-02
#> age3 0.00000 0.00000
#> age4 0.00000 0.00000
#> age5 0.00000 0.00000
#> age6 0.00000 0.00000
#> age7 61.74642 60.66980
#> age8 61.59535 60.53587
#> age9 61.74004 60.61440
#> age10 62.64468 61.60524