data.frames, rather than interdependent setup options
actions_lik <- list(
g3l_catchdistribution(
"aldist_comm",
obs_data = aldist_comm,
fleets = fleet,
stocks = stock,
function_f = g3l_distribution_sumofsquares()
),
g3l_catchdistribution(
"ldist_comm",
obs_data = ldist_comm,
fleets = fleet,
stocks = stock,
function_f = g3l_distribution_sumofsquares()
),
g3l_abundancedistribution(
"acoustic",
obs_data = acoustic_abund,
stocks = stocks_her,
function_f = g3l_distribution_surveyindices_log()
)
)where \(X_{c,t}\) is the cohort (\(c\)) specific growth transition matrix, \(S_.\) cohort specific survial and \(R_.\) the recruitment to cohort \(c\) at time \(t_{0_c}\).
g3a_grow_lengthvbsimple: \(\overline{\Delta l_i} = (l_\infty - l_i)(1 - e^{-k\Delta t})\)g3a_grow_length_multspec: \(\overline{\Delta l_i} = \Delta t p_0 l_i^{p_1} \psi_i (p_2 T + p_3)\)impl_f growth update (beta - binomial)delta_len_f mean growth ratedelta_wgt_f mean weight updatebeta_f \(\beta\) parametermaturity_f the maturity functionkappa_f =
g3_formula(
Ka * cur_temp + Kb + eps,
Ka = g3_parameterized('Ka'),
Kb = g3_parameterized('Kb'),
eps = g3_param_project(
"eps",
by_step = FALSE,
g3_param_project_dnorm()
),
cur_temp = g3_timeareadata(
'temperature',
temperature_df,
value_field = "temp",
areas = areas
)
)
params.in <-
params.in |>
g3_init_val('*.Ka', 0.01) |>
g3_init_val('*.Kb', 0.1) |>
g3_init_val('*.dnorm.mean', 0) |>
g3_init_val('*.dnorm.mean', 0.01)
Gadget3 has received funding from: