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A B S T R A C T

In recent years a greater emphasis has been placed on developing management strategies that prevent over-
exploitation. Harvest control rules (HCRs) have therefore, in many places, been developed and implemented.
Commonly these HCRs are developed for stocks that are assessed using age-structured models, and various
platforms exist to evaluate their performance and analyze various sources of bias for that particular class of
models. Many stocks, however, cannot be assessed reliably using classical age-structured methods due to data
limitations (gaps in data series, unreliable age readings, etc.). One such stock is the common ling (Molva molva)
in Icelandic waters. Availability of data on the stock dynamics, in particular age data for both survey and
commercial samples, has been a limiting factor when assessing the stock. When modeling stocks such as this,
data limitations need to be considered, and how associated uncertainty is propagated both through the as-
sessment and into the advice. In this study, ling was assessed using the size- and age-structured model Gadget
after synthesizing all available data. Having limited age data available causes high uncertainty in the model
fitting process, especially in estimating growth. However, including this key uncertainty in the assessment al-
lowed the subsequent management strategy evaluation to take it into account directly while deriving common
management reference points and estimating uncertainties in stock status and other derived quantities.
Uncertainty was estimated using a specialized bootstrap for disparate data sets that mimics the sampling process.
The process of assimilating data for the assessment model and the bootstrap procedure was performed using a
specialized database program, MFDB, ensuring that the whole process is reproducible.

1. Introduction

In recent years there has been a call for sustainable management of
fisheries. This is reflected in a number of common multinational re-
solutions on the governance of marine ecosystems (e.g. UN, 2002;
Parliament, 2008). In particular the European Union has stipulated that
all fish stock should be managed according to maximum sustainable
yield principle (Anon, 2002a,b). To ensure that these objectives are
reached, management plans that restrict fishing effort have been pro-
posed and implemented (e.g. see Annex 1 of ICES, 2013b). Typically
these plans include some form of a harvest control rule (HCR) based on
the available data (e.g. see Baldursson et al., 1996; Butterworth and
Punt, 1999).

Evaluating fisheries management plans is not a trivial undertaking.
The HCR is often simulation tested using an operating model which is
based on knowledge of the population dynamics (discussed by
Butterworth and Punt, 1999, and references therein) and industry
governance. ICES (2013a) provides guidelines on how to conduct these

simulations, and ICES (2017b) specifically describes how to derive
management reference points necessary to implement an HCR in Eur-
opean waters. For many species, the information typically needed for
traditional age-based assessments is lacking, leaving little data avail-
able to inform general productivity and stock structure. This is true for
many of the stocks assessed by multinational bodies such as ICES (e.g.
see ICES, 2014a). For example, some age-based methods do not allow
for years of missing data (e.g. Shepherd, 1999, and other VPA-based
methods). According to ICES, the lack of data to produce an assessment,
and subsequently quantitative forecasts, warrants a classification as
data limited (ICES, 2012). Without age composition data, variants of
the surplus production model (as described by Pella and Tomlinson,
1969) are commonly applied (Carruthers et al., 2014). These ap-
proaches allow for the analytical estimation of reference points while
being based on fairly limited data. For example, a popular expansion of
this approach was developed by Pedersen and Berg (2017), which has
been rapidly applied in a variety of cases (e.g., ICES, 2017a). Surplus
production methods, however, are known to fail in situations where
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little contrast is available in the survey and catch time series or such
contrast is only exhibited as a constant decrease (i.e., “one-way trip”).
In contrast, age-structured models are still able to capture some in-
formation from such scenarios (Magnusson and Hilborn, 2007) as there
is contrast in cohort strength.

Age-based methods are therefore preferred, and considered a stan-
dard in stock assessment the advisory process, because age transfers
important information into a stock assessment model: it allows for in-
ference of the time scale on which population dynamics occur, by
supplying information on the growth of individuals and how it trans-
lates into growth of the population. Age in combination with weight-
and maturity-at age is used to calculate the rate at which spawning
stock biomass is generated, which can in turn be used to detect re-
cruitment impairment due to low spawning stock biomass within a
stock–recruitment relationship. At the same time, however, inclusion of
faulty age-related information can lead to bias. Age-based methods
assume that age is known perfectly with no error, a false assumption in
many cases (Reeves, 2003; Yule et al., 2008; Treble et al., 2008). Ageing
error can then cause bias in a number of age-based processes within
age-based stock assessment methods, since a variety of data included
are a discretized by age (e.g., numbers-, catch-, maturity-, selectivity-
and weight-at age). Quite often the age determination involves the
processing of sagital otoliths and/or a study of length distributions to
infer a cohort structure (as discussed by Jobling, 2002 and references
therein). The ageing process is for many species, such as cod (Gadus
morhua) and haddock (Melanogrammus aeglefinus), fairly straightfor-
ward. Both species are highly abundant, many facets of their life cycle
well known and they are of considerable commercial value. However,
even for highly studied data-rich species, inconsistencies in ageing can
bias stock assessments (e.g., Baltic cod among other species Bertignac
and De Pontual, 2007; Koenigs et al., 2013; Henríquez et al., 2016;
Hüssy et al., 2016), as can undetected changes in growth rates over time
(e.g., Icelandic haddock ICES, 2017c). Fishing-induced changes in
growth can also bias age-based assessments, spurring the development
of “platoons” in age-structured models (Taylor and Methot, 2013;
Akselrud et al., 2017). Finally, for many species, information on age is
simply hard to obtain. This may be due to lack of hard parts that show
year rings, inconclusive otolith readings, or difficulties/inconsistencies
in age data collection (Treble et al., 2008). As a result, even when
otoliths are available, translating continuously deposited bone tissue
(i.e., rings) into discrete annual growth measures (i.e., age) typically
require sound and validated methods.

In response to the common need for stock assessment models to
both handle data limitations as well as propagate error appropriately
throughout the assessment by integrating various steps of analysis into
a single stock assessment model, integrated stock assessment models,
such as the Gadget model presented here, have increased in popularity
over the last decades (Maunder and Punt, 2013). The ICES classification
of data-limited is often a misnomer as there may be a wealth of other
information, such as size composition data, on the species than that
which is directly applicable to standard assessment models. Were a
stock to be evaluated under alternate criteria, it may not be considered
data limited due to the existence of at least some compositional data in
addition to survey indices and catch (Ralston et al., 2011; Berkson and
Thorson, 2014; Carruthers et al., 2014). For example, the lack of reli-
able age data on ling in Icelandic waters is reminiscent of assessments
of many invertebrate stocks (e.g. see Punt et al., 2013, 2016, and si-
milar papers). The stock assessment of ling in Icelandic waters pre-
sented here is therefore more analogous to size-structured assessments,
as historically little information has been collected from commercial
samples, particularly on age.

Size-structured models that also track age, so that data on growth
may be used to supplement them, are commonly referred to as size- and
age-structured models (Punt et al., 2017), and are most commonly
implemented as integrated models. In size- and age-structured models,
the data and model predictions have two attributes: a length-group bin

and an age-group bin. As a result, when parameterized such that
growth, maturation, and selection processes are only dependent on size,
size-structured models are a special case of size- and age-structured
models. However, common implementations of age-based models (e.g.,
Stock Synthesis Methot, 2013 or MULTIFAN-CL Fournier et al., 1998)
are often not a special case of size- and age-structured models, due to
the need to apply a summarised effect of growth, maturity, and/or se-
lectivity (when these are size-based processes) to all individuals (re-
gardless of length) within an age bin (see Punt et al., 2017, for an ex-
ample). Size- and age-based models, such as those developed using
Gadget (Begley and Howell, 2004) or CASAL2 (Doonan et al., 2016),
offer alternative methods to assess the stock status combining compo-
sitional data if and when available.

The trade-off for using size- and age-structured models comes in the
form of a reduction in computational efficiency, due to the higher di-
mensionality of the model (Punt et al., 2017). But in the case of data
limited species, the resulting benefits may be well worth the cost. Even
if there is little or no information available on age, other size-structured
biological information may be available that can provide insights into
the stock dynamics. In terms of management, the inclusion of even very
limited length data may improve estimate on how much the stock can
reasonably be harvested without severely depleting the stock (Wetzel
and Punt, 2011).

The goal of this study is to demonstrate how a size- and age-based
model (i.e., Gadget) can be suitable for stock assessment by providing
an appropriate means to propagate error, especially age-related error,
into a management strategy evaluation of harvest control rules. This
framework is especially valuable where data are limited, such as in the
case for ling (Molva molva) in Icelandic waters, as standard age-based
methods are likely to misrepresent age-related uncertainty. Gadget is a
statistical modelling and simulation framework that allows the creation
of a multi–species, multi–fleet, multi–stock, size- and age-structured
simulation model. Originally outlined by Stefansson and Palsson (1998)
Gadget is a conceptual continuation of the work described by Gavaris
(1988) and Bogstad et al. (1997) and is implemented as a computer
program (Begley, 2005). We present simulations where observation
uncertainty (and to a certain extent structural error) is projected for-
ward using a specialised spatial bootstrap approach described by
Elvarsson et al. (2014). Robust data handling is also essential for this
line of work; therefore, a specialised database system, MFDB (Lentin,
2014), is also presented which builds upon concepts of database design
that particularly suit the needs of stock assessment and ecosystem
studies, as described by Kupca (2006). This database procedure is used
in conjunction with a specialised R package, Rgadget (Elvarsson and
Lentin, 2018), that allow rapid and reproducible model building within
the Gadget framework. Although the simulation procedure described
here is applied to a single-species assessment, it can be generalized to a
wider set of models, e.g. multi-species, multi-stock, or multi-fleet
models, as implemented in the Gadget framework.

2. Materials and methods

The first step of this study details a data challenged stock assessment
using Gadget, after synthesizing the available data on the population
dynamics of ling. The second step extends the assessment model by
setting up a projection model in which precautionary biomass reference
points were derived (first set of projections). In the final step, the
projection model was used as the operating model on which a man-
agement strategy evaluation (MSE) was based, in which the application
of simple harvest control rule was simulated (second set of projections).

2.1. Ling in Icelandic waters

Ling (Molva molva) is a demersal fish found in the Northeast
Atlantic, with the main spawning grounds observed south of Iceland, by
the Faroe islands and in the Norway Sea, representing different stocks
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biologically and for assessment purposes. The assessment presented
here is based on ling from Icelandic waters, where it is fairly abundant
in the southern part of the Icelandic continental shelf area (ICES,
2014a). Ling is caught at depths 15–1000m, while the bulk of the
catches are between 100 and 400m. It feeds mainly on fish (the
Northern herring Clupea harengus, various flatfish, haddock, and cod)
and benthic invertebrates. Spawning occurs in May and June at depths
of 150–300m near the southern edge of the Icelandic shelf.

Historical catch series of ling date as far back as the cod fishery in
Iceland. However, due to relatively low abundance in catches compared
to other species, very few biological samples are available despite
consistent surveys (Fig. 1). Relatively few commercial samples are
available prior to beginning of the century. In more recent years, an
increase in survey abundance has been observed, which has coincided
with increased catches.

Ling in Icelandic waters is mainly caught by three types of gear:
longlines, gillnets and trawls. Most ling are caught by longlines (65% in
2009–2011). The fishery for ling in Icelandic waters has not changed
substantially in recent years, although as the proportion caught by
longlines has increased, the proportion of ling caught by gillnets has
decreased from 20–30% in 2000–2001 to 3–8% in 2008–2011. Catches
in trawls have remained more constant, around 20%. This pattern re-
flects broad changes in the commercial fleet operations in Icelandic
waters (MFRI, 2017). Ling is mainly caught as bycatch in cod or had-
dock fisheries which are not highly seasonal.

2.2. Operating model

To encompass the available knowledge on ling and fishing opera-
tions, a population dynamics model describing the main stock dynamics
and interaction with fleets was set up. The model, whose components
are illustrated in Fig. 2, was essentially a single species model (i.e.,
multi-species features were not used) with stock components defined
for immature and mature portions (reflecting a single stock in the
biological or spatial sense). Four fleets targeted ling, three gear–based
commercial fleets plus the survey, allowing for differences in selectivity
and resulting temporal changes in catch composition due to changes in
fleet composition. In a typical Gadget model the simulated quantity is
the number of individuals, Na,l,s,y,t, at age a= amin… amax, in a length-

group l (representing lengths ranging between lmin and lmax in length-
group ranges of Δl), in stock component s where s=0 represents the
immature stock component and s=1 represents the mature stock
component, at year y which is divided into timesteps of t=1… tmax

(usually tmax= 4, reflecting quarters). The time step length is denoted
Δt (usually in units y−1). Population numbers are governed by the
following equations:
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where Gl
l
′ is the proportion in length-group l that has grown l− l′ length

units (e.g., cm) in Δt. Cf a l s y t, , , , ,′ denotes the catches by fleet f∈ {S, L, G,
T}, i.e. the fleets representing the survey (S),1 longliners (L), gillnetters
(G), and trawlers (T). Ma is the natural mortality at age a and Aa l l s y t, , , , ,′

denotes the numbers of immature fish at length l′ that have matured
(i.e., “moved” from the immature to the mature stock component) as
they grew to length l. Throughout the model description, l and l′ are
used either to reflect two separate length groups, or the midpoints of
these length-group intervals, depending on the context.

2.2.1. Growth
Growth in length is modeled as a two-stage process. First, an

average length increment over Δt is modeled as a size-dependent pro-
cess using a parametric growth function, such as a Von Bertanlanffy
function as employed in this study:

l l l eΔ ( )(1 )k tΔ= − −∞
− (2)

where l∞ is the maximum asymptotic length and k is the annual growth
rate. Second, dispersion around the growth increment (l− l′) is mod-
eled according to a beta–binomial density (as described by Stefánsson,

Fig. 1. The number of tows in which biological samples have been taken of ling in Icelandic waters, from both the survey and commercial fisheries operations.

1 The survey fleet catches are given a nominal catch (e.g., 1 kg per year) to allow for
survey age and length distribution predictions.
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2005):

G B α β n( , , )l
l =′ (3)

with a mean αβ= Δl and α is subject to

α
β l

n l
Δ

Δ
=

− (4)

with n fixed as the maximum length group steps over which a fish can
grow in a particular timestep, and β estimated. Note that inherent in
this approach is that the growth increment is always positive, which
requires a slightly different interpretation of the k and L∞ parameters
compared to what one would expect from a more traditional Von Ber-
tanlanffy age-based model (i.e., L∞ is rather like an upper boundary
than a mean maximum expected length).

The weight at length-group l, Ws,l, is calculated according to the
following length–weight relationship2:

W μ ls l s
ω

, s= (5)

2.2.2. Recruitment and initial abundance
The number of recruits each year, Ry, is estimated within the model

as a fixed effect (separate parameters per year) and recruitment enters
the population according to:

N R pa l s y t y l, , 0, ,min == ′ (6)

where t′ denotes the recruitment time-step and pl is the proportion in
length-group l that is recruited. The proportion pl is determined by a
normal density with mean length set to the initial length l0, which
corresponds with the recruitment age 1 according to Eq. (2) and var-
iance at the recruitment age a′ (σa

2
′).

3

A similar formulation of initial abundance in numbers is used for
older age groups in length-group l:

N ν q ea a l s y t a s a l
F M

, , , 1982, 1 , ,
( )a

min
0=≠ = =

− + (7)

where νa,s is the initial number at age a in the initial year of stock s
scaled by the initial mortality F0+Ma and qa,l, the proportion at length-
group l which is determined by a normal density with a mean predicted
by the growth model in Eq. (2) and a variance σa

2. The initial fishing
mortality, F0, is used here for numerical purposes to allow for sensible
starting values and parameter boundaries when estimating νa,s.

2.2.3. Maturation
Maturation is modeled as unidirectional movement from the im-

mature (s=0) to the mature (s=1) stock component:
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where ml
l
′, the proportion of immatures that mature after growing from

length l′ to l, is defined as:
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where l50 is the length at 50% maturity and estimated along with λ, and
amaxmat reflects a set upper bound for the maturity ogive to apply, after
which all fish are mature.

2.2.4. Fleet operations
Fleet-specific selectivity functions were modeled as

S l
e

( ) 1
1f b l l( ( ))f f50,

=
+ − − (10)

Annual landings data were fleet- and time-step-specific (Lf,y,t), and as-
similated into the model as direct removals of biomass by first simu-
lating the expected composition of catches based on Eq. (11).4 The
expected compositions of catches in biomass (Cf a l s y t

B
, , , , , ) were de-

termined by multiplying landings (Lf,y,t) by the proportion of the total

Fig. 2. Schematic description of the Gadget model for ling. Lines indicate flow from one model component to the other. Black lines indicate consumption by predators
(fleets), red lines the modelled predictions/observations sent to the likelihood and green lines movement between immature and mature stock components. Dashed
red lines indicate that predictions of survey indices were not adjusted by survey selectivity; instead, catchability was estimated. (For interpretation of the references
to color in this legend, the reader is referred to the web version of the article.)

2 Gadget also allows for time-varying weight–length relationships, but this was not
considered beneficial in this setting.

3 Initial length l0 used here was parameterized to have a similar effect as t0 in a typical
von Bertalanffy growth model with a one-to-one mapping between the two. 4 Other functional forms, referred to as ‘suitability’, are defined in Gadget.
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biomass available to be fished at a given age, length and stock com-
ponent (immature/mature). The proportion was defined by biomass at
a specific value of a, l, and s in the numerator, as available to the fleet
(i.e., multiplied by selectivity Sf in Eq. (11), divided by the sum of all
biomass fishable by the fleet (i.e., values summed over the full range s′,
l′, and a′ in the denominator). Catches in numbers are then defined by
dividing by stock- and length-specific weights (Cf,a,l,s,y,t):

C L

C

f a l s y t
B

f y t
S l N W

S l N W

f a l s y t
C

W

, , , , , , ,
( )

( )

, , , , ,

f a l s y t l s

s l a f a l s y t l s

f a l s y t
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l s

, , , , ,

, , , , ,

, , , , ,

,

=

=

′∑ ∑ ∑′ ′ ′ ′ ′ ′ ′ ′

(11)

2.3. Observation model

The model simulation begins in 1982, with a maximum age set as a
plus group to 15 (at which ≈1% of fish were minimally aged). Maturity
data were only available for aged fish and sparse for older fish.
Therefore, all ling were set to mature at 10 (amaxmat=10), as 90% aged
10 or older were mature, to simplify estimation of the maturity give
applied to younger fish. Recruitment to the immature stock component
occurs at age 3, at the end of the 1st quarter. Fully selected ages include
age 12 and above. The length range in the model was between 20 and
160, in 4 cm length intervals. The reported reference biomass was the
biomass of fish larger than or equal to 75 cm, denoted B75cm+,y. An
overview of the data sets and model parameters used in the model study
is shown in Tables 2 and 3 respectively. In formulations below it is
assumed that the compositional data are sampled at random, both from
the fishery and surveys, as this is how the sampling protocol in Ice-
landic waters is set up for ling.5

The bulk of the biological samples of ling comes from the Icelandic
groundfish survey (described by Pálsson et al., 1997) which is con-
ducted in March every year. The survey started in 1985 with the aim of
measuring the changes in the biomass of key fish species in Iceland, cod
being the primary focus. Ling is typically caught south of Iceland in the
survey, with the average number of ling caught in a given year around
420 individuals in 131 tows (see Fig. 3). In the survey, all fish lengths
are measured and every fourth fish (or a minimum of 5 and maximum
of 25 per sampling station, although this upper limit is rarely reached)
is further processed for biological information such as age, maturity, sex
and organ weight. In the most recent years a considerable increase in
the catches of ling has been observed (Fig. 1), resulting in a substantial
increase in the number of samples from commercial catches despite
similar sampling effort.

With a model such as the one used here that compiles and ag-
gregates various sources of data, accurate and efficient data processing
is imperative to mimimize potential errors, increase transparency in the
model-fitting process, and facilitate exploration of different model
configurations. To this end, all data used in this study were processed
through as specialised database system. This database system was in-
terfaced using an R package, MFDB (Lentin, 2014), where all data re-
levant to single- or multi-species stock assessment in Iceland were
stored in a minimally aggregated manner. Data were imported to the
system from various sources such as biological institutional databases,
landing statistics and logbooks. Similarly MFDB has aggregation and
export routines that generate input files for the likelihood components
in the desired file format needed for Gadget. This allowed for the age
and length aggregation of the data to be adjusted whenever needed,
thereby speeding the model exploration and development process. In
addition to MFDB, all model settings, estimation (including the iterative
reweighting described below) and output processing was conducted
using a specialised R package, Rgadget (Elvarsson and Lentin, 2018).

The combination of these two R packages, which are freely available
but still under development, allowed the whole modelling process to be
reproducible. Model scripts are available at https://github.com/
fishvice/gadget-models/06-ling.

2.3.1. Survey indices
Survey indices from the Icelandic groundfish survey were used to fit

the model. The survey abundance indices were aggregated into seven
length intervals (Table 1, Fig. S1 in supplementary material) and de-
fined as the total number of fish caught in a survey within a certain
length interval. Eight or 12 cm intervals were used for the indices (due
to the 4 cm length–bin model structure), except the smallest and the
largest length intervals. These intervals were enlarged to avoid getting
zero values in the bootstrap replicates described below.

For each length range g the survey index is compared to the modeled
abundance at year y and time-step t using:

l I q b N(log (log log ))g
y t

g y g g g y t
SI

, , ,
2∑ ∑= − +

(12)

where

N N ,g y t
l g a s
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∈

Igy refers to survey index summed within indicated length range, qg
is the associated catchability, and bg controls the shape of the power
function that relates the index to absolute abundance (i.e., bg=1 in-
dicates linearity).

2.3.2. Fleet data
Length frequency distributions from survey and commercial catches

were compared to predictions as proportions using
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where f denotes the fleet from which data was sampled, and the pro-
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represent the observed and modeled proportions respectively. Length
frequency proportions for a given fleet (f), year (y) and time-step (t)
combination were formed as the numbers of fish at a particular length
(l), but summed over ages (a′) and stock components (s′), divided by
numbers summed over all possible lengths (l′), ages (a′) and stock
components (s′). The choice of the form of likelihood follows the sug-
gestion from Taylor et al. (2007), as the assumption of a multinomial
likelihood is inappropriate due to the correlation structure in length
composition data (e.g. see Hrafnkelsson and Stefánsson, 2004; Babak
et al., 2007). Data on age-length and maturity proportions were com-
pared to model predictions in a similar manner.

Table 1
Length aggregation of survey indices used for fitting the model.

Name Min Max

si.20–50 20 52
si.50–60 52 60
si.60–70 60 72
si.70–80 72 80
si.80–90 80 92
si.90–100 92 100
si.100–160 100 160

5 Other forms of likelihoods are implemented in Gadget that can be used to address
other types of sampling, e.g. length-stratified sampling of age or maturity.
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2.3.3. Iterative re–weighting
The objective function used in the modeling process combines Eqs.

(12)–(13) with the following formula:

l w l w l w l w l( )T
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,
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LD LD AL AL∑ ∑= + + +
∈ (14)

where SI, LD, AL and M refer to number (SI= survey index) and pro-
portion data types (LD= length distribution, AL= age-length,
M=maturity; see previous Sections 2.3.1 and 2.3.2) and w reflects the
weight assigned to each likelihood components.

Weights are assigned according to the iterative weighting heuristic
introduced by Stefánsson (2003), and subsequently implemented by
Taylor et al. (2007). Essentially this heuristic is a inverse variance ap-
proach where the component variances are based on multiple model
runs in which a particular component has been excessively emphasized
(Elvarsson and Lentin, 2018). To avoid issues related to overfitting
individual length-grouped survey indices, likelihood components were
grouped and weighted together, thus ensuring that more than one
survey index per year were available within a weighted group
(Table 2).

2.3.4. Uncertainty estimation via bootstrapping
To estimate the uncertainty in the model parameters and derived

quantities, a specialised boostrap for disparate datasets was used (de-
scribed by Elvarsson et al., 2014). The approach was based on spatial
subdivisions, which are illustrated in Fig. 3, that are considered to be
i.i.d. This assumption of identical and independent distribution is of
course not always true, but the bootstrap approach does roughly mimic
the sampling process. When performing resampling, the compositional
data within each subdivision were aggregated, and then summarised
over the subdivision selected in the bootstrap. For each bootstrap re-
plicate, the operating model (described in the previous sections) was
fitted the same way as for the original dataset base run. One hundred
bootstrap replicates were used, following the advice of Elvarsson et al.
(2014), who considered 100 to be a good balance between computing
time and accuracy in parameter variance estimates. The bootstrap ap-
proach was implemented within MFDB (Lentin, 2014), where the user
defines the spatial subdivisions and the bootstrap procedure generates
the desired number of replicate input files.

2.4. Stock status and derivation of biological reference points

Estimates of stock status were used to derive biomass and effort-
related reference points according the guidelines described by ICES
(2013a). Generally, ICES derives reference points based on fishing

Table 2
Overview of data used in the observation model. Survey indices were calculated from the length distributions and are disaggregated (“sliced”) into seven groups
(Table 1). Number of data points refers to aggregated data used as inputs in the Gadget model and represents the original data set. Weight groups are those used
during iterative re-weighting. All data can obtained from the Marine and Freshwater Research Institute, Iceland.

Origin Time-span Length group size Num. data-points Likelihood-function Weight group

Age–length distributions:
Bottom trawl All quarters, 2001–2016 4 cm 946 See Eq. (13) comm
Gillnet All quarters, 2001–2016 4 cm 449 See Eq. (13) comm
March survey 2nd, 2001–2016 4 cm 935 See Eq. (13) aldist.igfs
Longline All quarters, 2001–2016 4 cm 1291 See Eq. (13) aldist.lln

Length distributions:
Bottom trawl All quarters, 1982–2016 4 cm 1440 See Eq. (13) comm
Gillnet All quarters, 1982–2016 4 cm 693 See Eq. (13) comm
March survey 2nd, 1985–2016 4 cm 928 See Eq. (13) ldist.igfs
Longline All quarters, 1994–2016 4 cm 2129 See Eq. (13) ldist.lln

Ratio of immature: mature by length group:
March survey 2nd, 1990–2016 8 cm 680 See Eq. (13) matp.igfs

Survey indices:
March survey 1st, 1985–2016 20–52 cm 32 See Eq. (12) sind1
March survey 1st, 1985–2016 52–60 cm 32 See Eq. (12) sind1
March survey 1st, 1985–2016 60–72 cm 32 See Eq. (12) sind1
March survey 1st, 1985–2016 72–80 cm cm 32 See Eq. (12) sind2
March survey 1st, 1985–2016 80–92 cm 32 See Eq. (12) sind2
March survey 1st, 1985–2016 92–100 cm 32 See Eq. (12) sind2
March survey 1st, 1985–2016 100–160 cm 32 See Eq. (12) sind2

Table 3
Overview of parameters in the operating model.

Description Notation Estim. Comments Eq.

Natural mortality Ma No 0.15 (1)
Growth function k, L∞, l0 Yes Maximal growth rate, asymptotic length, and initial length (at age 1). (2)
Growth dispersion β, n Yes, No n=15max length group increase in a time step (3)
Selectivity bf, l50,f Yes Fleet-specific (10)
Maturity ogive λ, l50 Yes (8)
Variance in length at recruitment σa

2 Yes For a=3, y∈ [1982, 2016] (6)

Variances around initial mean lengths σa
2 No For a≠ 3, y=1982, based on length distributions obtained in the survey. (7)

Number of recruits Ry Yes Determines numbers at a=3 for y∈ [1982, 2016]. (6)
Initial abundances νs,a Yes For a≠ 3, y=1982 (7)
Survey catchability qg, bg Yes Intercepts and slopes term in a log–linear relationships of indices with abundances. The slope bg is fixed to 1

for all indices but si.20–50 and si.50–60.
(12)

Length–weight relationship μs, ωs No Based on lengths and weights obtained in the survey (5)
Scalars Rc, Ic,s, F0 Yes Scaling coefficients for recruitment, initial numbers at age, and initial fishing mortality (applied to all age

groups)
(7)
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mortality, but for some stocks, the reference points are determined in
terms of harvest rate. These harvest rates relate the amount of catches
to a reference biomass (e.g. spawning stock biomass [SSB], or biomass
of fish larger than a minimum size or older than a minimum age [Bref],
which is B75cm+ for ling). For ling, a management plan was suggested in
terms of the harvest rate rather than fishing mortality (see next section
and ICES, 2017d); however, we present results in terms of both. All
biomass reference points were calculated in terms of SSB, whereas Bref

was only used within the harvest control rule.
The effective annual fishing mortality at age and time step t was

calculated according to the following equation:
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where Ca,s,y,t= ∑f,lCf,a,l,s,y,t and Na,s,y,t= ∑lNa,l,s,y,t. For ling, the reported
Fy is the average Fa,y for fully recruited ages (a=5+).

Harvest rate in terms of the reference biomass is calculated as:
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(16)

where Cy= ∑f,a,l,s,tCf,a,l,s,y,t and Bref,y= ∑a,l,s,tNa,l,s,y,tWs,l.
Within the ICES advisory framework, biological reference points are

used to guide the creation of harvest control rules and are used in other
advisory protocols. These reference points include Blim, Bpa, and the
harvest rates or fishing mortalities that result in biomasses equal to
these reference points at equilibrium (Hlim and Hpa or Flim and Fpa, re-
spectively). Blim is defined as “a deterministic biomass limit below
which a stock is considered to have reduced reproductive capacity”
(ICES, 2017b, p. 1). Bpa is defined as “a stock status reference point
above which the stock is considered to have full reproductive capacity,
having accounted for estimation uncertainty” (ICES, 2017b, p. 1). ICES
standard procedures (ICES, 2017b) were used to derive these quantities.

2.5. Evaluation of a harvest control rule

An initial set of simulations were used to select a candidate harvest

rate that maximized yield with low risk of achieving low biomass levels
(i.e., crossing Bpa), and to define other biological reference points de-
fined in the previous section. This candidate harvest rate and reference
points were then implemented within a harvest control rule in a second
set of simulations used to evaluate its performance as a management
strategy. In each set of simulations, the effect of uncertainty was eval-
uated by projecting all bootstrap data sets and comparing equilibrium
status to reference points. Each set of simulations included (1) bootstrap
sampling of the stock data to replicate observation error and estimation
of model parameters based on that bootstrap replicate (i.e., a simulated
stock assessment, described previously), (2) setting a TAC either (a)
corresponding to a range of harvest rates (0–0.7, initial simulations), or
(b) using a harvest control rule that implements a chosen candidate
harvest rate with scaling of the harvest rate below a trigger biomass
level (management strategy evaluation), (3) forward simulation of the
stock based on estimated parameters and process error (described
below), and (4) fishing by all fleets according to their estimated se-
lectivities. Overall proportions of catches were allotted among fleets
based on the last three years in the time series of actual catches. Each
year, TACs were filled exactly.

Stock structure has been discussed in an ICES working group (ICES,
2007), which concluded that ling should be assessed as a single stock
unit. However, the spatially based bootstrap approach employed here
to some degree accounts for errors in the assumption that spatial
structure does not exist by quantifying uncertainty based on spatial
resampling. As a result, this uncertainty includes observation error
alongside error generated from unknown spatial structure. Bias re-
sulting from illegal landings and discards by Icelandic fishing vessels
are considered to be negligible (MRI, 2013). The largest source of error
outstanding was assumed to be process error, in particular variation in
recruitment and assessment error.

Ling do not show a relationship between spawning stock and re-
cruitment (ICES, 2017d), so recruitment in projections was drawn from
the historical distribution using a block-bootstrap, with each block in-
cluding a randomly drawn starting year and six consecutive years. The
six-year block length was arbitrary but chosen to ensure some auto-
correlation in recruitment could be captured despite having a relatively

Fig. 3. Locations of ling catches (points) by commercial and survey fleets in 2015 relative to the spatial subdivision (solid lines) on the Icelandic continental shelf
area. The dotted lines represent the depth contours.
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short recruitment time series from which random blocks could be
generated. To account for autocorrelated corrections in retrospective
plots, which is a commonly observed pattern believed to be caused by
inconsistencies in survey indices (ICES, 2014b, 2015), autocorrelation
was also introduced in assessment error. Assessment errors were emu-
lated as:

B e Bˆ y
E

yref, ref,y= (17)

where Bref,y is the reference biomass and E σ ρ ρ( ϵ 1 ϵ )y y y1
2= + −− the

assessment error. Observation error was reflected by σ in Eq. (17),
whereas autocorrelation between assessment years was described by ρ
and error ϵy∼N(0, 1). Observation error in σ was set in forward pro-
jections by using the CV generated among bootstrap replicates in initial
projections. The autocorrelation in assessment error ρ was set to 0.8,
which was perceived as the upper limit to potential correlation (similar
default values used by ICES are FCV=0.212 and autocorrelation
Fphi=0.423, see ICES, 2014b, 2015).

Formation of the harvest control rule follows standard ICES meth-
odology. The evaluation framework can be classified as a simulation
without assessment feedback, as it is assumed that the simulation
within the operating model represents the true stock dynamics. The
harvest control rule then allocates catches to the fleets using a simple
scalar applied to the estimated reference biomass (Fig. 4):

H B B

HB B
TAC

ˆ if SSB

ˆ if SSB
y

B y y

y y

1

SSB
ref, trigger

ref, trigger

y

trigger=
⎧
⎨
⎩

<

≥
+

(18)

In the model, as in practice, the reference biomass used to calculate
the TAC is observed during the fishing year prior to when the TAC takes
effect. Reference biomass is observed at the end of the first quarterly
timestep of year y during the assessment procedure, but this TAC ap-
plies from the fourth timestep of year y through the first three timesteps
of year y+1. This two-quarter time lag results in a slight mismatch
between expected and realized harvest rates, as reference biomass will
change slightly over the time lag. Finally, fishing the entire TAC was
implemented with portions of the TAC spread to ages and lengths ac-
cording fleet suitabilities evenly across timesteps (Eq. (11)).

3. Results

3.1. Parameter estimates

Parameter searches were bounded, but final estimates rarely rested
at the boundaries. Most distributions were spread around the base run
value shown in Fig. 5. Two parameters related to growth l0 and σa=3,

recruitment length and length variance, were estimated at the boundary
in a substantial portion of the bootstrap trials, and therefore effectively
fixed. Growth dispersion for older fish (not including initial condition
parameters) was determined by a combination of the β and n para-
meters, the latter of which is fixed and can be set low enough to be
constraining if needed. Where n is set to a reasonable maximum, as in
this case, it does not constrain growth estimation. The maximum length
estimate L∞ appeared to be effectively fixed as the bulk of the bootstrap
replicates estimated it to be at or close to the length of the largest fish
observed; however, it did not hit parameter boundaries. Although the
other two parameters were ill-determined, they had little effect on the
estimated biomass and fishing mortality. Estimates of recruitment and
initial population parameters are shown in supplementary material
(Fig. S2). In no instance did they hit the boundaries and the estimates
showed a fairly symmetric spread. The greater spread of recruitment
estimates in and after 2013 revealed large uncertainty, as is to be ex-
pected given little data on those cohorts that can help inform recruit-
ment. The base run follows the median of the bootstrap estimates clo-
sely, indicating little discernable bias.

3.1.1. Abundance indices
For all survey index length groups the fit to the abundance indices

was fairly good as shown in Fig. 6. The mode of catchability was cen-
tered around the 60–70 cm survey index length group and started to
taper off for larger fish. For the larger length groups, the model tended
to predict a lower increase in abundance than was observed. The as-
sumption of a slope of 1 (i.e. a linear relationship between index and
abundance) for the larger length groups appeared to be valid while
combined with estimating the slope for the smallest two groups, as it
improved the fit to the indices.

3.2. Compositional data and selectivity

Selected model fits to various compositional dataset are illustrated
in supplementary material (Fig. S3). The model compares data to pre-
dictions at each time step if and when the data are available. In general,
the model appeared to replicate well the observed size and maturity
proportions. The estimated selectivity curves for model fleets are shown
in supplementary material (Fig. S4). along with the median and 5–95%
interquantile range from bootstrap runs. The longline and trawl fleet
selectivities were not substantially different, with respective median
values of l50 at 76.91 cm (range 72.93–78.28) and 75.37 cm (range
69.96–77.55). The l50 in the survey was estimated to be slightly lower,
68.28 cm, but with higher uncertainty (range 54.18–86.92 cm). The l50
of the gillnet fleet was considerably higher: 101.62 cm (97.97–101.62).

Fig. 4. Graphical presentation of the proposed management rule. The black solid line indicates the harvest rate as a function of the By
ref .
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3.3. Stock status

The model predicted that total biomass was currently declining
from its peak level in 2014. Similarly, reference biomass and the
spawning stock biomass (SSB) was starting to decline but remained at a
level considerably higher than previously observed (Fig. 7). The SSB
reached its lowest point at 9.93 kt in 1991. The bootstrap runs indicated
that uncertainty about population estimates has been increasing in re-
cent years, as expected in light of the increase in the variance of the
survey indices and fewer data points related to those cohorts. The
coefficient of variation (CV) of the population estimates from the
bootstrap runs were on average around 0.15 for SSB, 0.15 for reference
biomass (> 75 cm), and 0.16 for recruitment (Fig. 7). However, for the
assessment year, the CVs of SSB and reference biomass were around
0.25 (ranging 0.1–0.26 historically) and 0.28 (historically ranging
0.09–0.28). From the model the fishery appears to mainly target the
mature population. The total biomass caught of immature fish was es-
timated to have varied between 12.4% in 1982 to 26.5% in 2011 and in
2016, with a current estimate of 12.6%.

3.4. Derivation of biological reference points

Initial simulations validated the base run as unbiased, so derivation
of the reference points proceeded from the base run. ICES technical
guidelines ICES (2017b) indicate that Blim should be chosen by ex-
amination of the SSB–Recruitment scatterplot (Fig. S5 in supplementary
material). Ling's stock–recruitment relationship showed that ling has

historically had a relatively narrow dynamic range of SSB and no evi-
dence of impaired recruitment. ICES guidelines suggest that in this si-
tuation where a low dynamic range in SSB has been observed, Blim

cannot be estimated from these data and that the lowest observed SSB
during that period (i.e. SSB(1992)= 9.93 kt from the baseline model) is
an appropriate value at which to set Bpa. A proxy for Blim could then be
calculated based on the inverse of the standard conversion factor from
Blim to Bpa, eσ*1.645 where σ is a constant equal to 0.2 (a standard pro-
cedure within ICES, see (ICES, 2017b), for further details. Therefore, a
proxy for Blim was set at Bpa/e1.645*0.2 = 9.93/1.4= 7.09 kt. The har-
vest rates Hpa, Hlim and Hmsy were then set as the rates that result re-
spectively in Bpa, Blim and Bmsy (biomass at which maximum sustainable
yield is achieved at equilibrium).

There was a large spread in yield and SSB for different values of H
around the median shown in Fig. 8, as a result of high variation in
productivity. The first set of projections showed maximum of the
median yield rested close to the harvest rate of 0.24 (see Fig. 8). The
limit harvest rate, Hlim, resulting in 50% long–term probability of
SSB> Blim, was estimated at 0.56 (an equivalent F of 0.70). The pre-
cautionary harvest rate, Hpa, fell at a higher rate than Hmsy, as Hpa is
intended to reflect an upper limit of harvest rates that avoids a risk of
the harvest rate surpassing Hlim, thereby risking a drop in stock biomass
below Blim.

The range of harvest rates considered for the harvest control rule lie
at the flattest portion of the peak in yield, ranging 0.18–0.3 (Fig. 8).
Projections of bootstrap runs from these harvest rates suggested high
variability in biomass and catches in projections, mainly as a result of

Fig. 5. Histogram of parameter estimates from 100 bootstrap samples. The red line indicates the estimate from the base run. Parameter descriptions are in Table 3.
Note that the panel boundaries are set relative to the spread of the bootstrap estimates and do not illustrate parameter bounds. (For interpretation of the references to
color in this legend, the reader is referred to the web version of the article.)
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high recruitment variability (Fig. 9). Individual projections likewise
showed high interannual variability, indicating consistency in the effect
of high recruitment variability across bootstrap runs. Removing the
effect of recent high recruitment (years 2010–2016) on recruitment
projections to test a more conservative recruitment option had little
effect (< 1%) on the estimated value of the harvest rate reference
points in projections.

3.5. Evaluation of a harvest control rule

There was essentially no difference in catch levels taken within the
range Hmp={0.18, 0.3}, but there was a substantial decrease in equi-
librium SSB as harvest rates increased. Therefore it was concluded that
Hmp=0.18 would be employed for management purposes, chosen as a
precautionary level within the context of the recent drop in recruitment
and SSB levels. The second set of simulations that implemented Hmp

within the full HCR as a MSE revealed that SSB never dropped below
Btrigger in projections (likely due to ling's relatively high stock status in
Iceland); therefore, results are the same as those obtained in the first set
of simulations for Hmp=0.18 (Fig. 9).

4. Discussion

The management strategy evaluation of ling in Icelandic waters
presented here represents an empirical case study in which a size- and
age-structured stock assessment was fitted with limited age data and
subsequently used for development of a harvest control. Overall, the
Gadget model presented here on ling in Icelandic waters captures the
general trends in the data, and in spite of minor mis-fits the model has
been used to present advice to managers (ICES, 2017d), which were
taken in the form of the harvest control rule with Hmp=0.18. Although
ICES usually uses Hmsy to set harvest rates, which would have been 0.24

Fig. 6. Comparison of the distribution of bootstrap length-aggregated abundance index data with survey indices predicted from the simulated management pro-
cedure, as well as baseline model results. The red lines and yellow shaded areas represent the median and 5–95% interquantile range of the predicted indices
resulting from simulations, respectively. The blue solid and dotted lines are the median and 5–95% interquantile range of the bootstrap data. The base model is
represented by original index data (black points) and predicted indices from the base model (black line). Length ranges of the survey indices follow the ‘si.’ label, and
sse indicates the standard error of the survey index. (For interpretation of the references to color in this legend, the reader is referred to the web version of the article.)
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in this case, a more conservative measure was instead chosen with
stakeholder approval because the difference in resulting catch between
the two levels was very little while the difference in spawning stock
biomass was substantial, and recent years indicated that spawning stock
biomass may be beginning to decrease. In addition, catch-quota bal-
ancing regulations implemented within Iceland allow for the possibility
of surpassing TACs to a certain extent, yielding some additional risk of
stock reductions (Woods et al., 2015). As a result, the more

conservative harvest control rule was also deemed acceptable by the
industry.

In complex integrated models that attempt to estimate many para-
meters using diverse data sets of varying quality, it is expected that
there may be problems with estimability of some parameters and fit to
some data-sets. The automatic iterative re-weighting procedure im-
plemented in Gadget (Taylor et al., 2007; Elvarsson and Lentin, 2018)
aids the consistency and effectiveness of finding a best-fit model (as

Fig. 7. Estimates of total and reference biomass, the latter including only ling larger than 75 cm (a), spawning stock biomass (b), harvest rate and fishing mortality
(age 5+) (c), recruitment (d), immature and mature ling landings (e), and coefficients of variation (CVs) for key quantities (f). For a–d, the distribution of bootstrap
estimates is represented by a black line (median) and yellow or blue shaded area (5–95% interquantile range). The red line shows estimates from the baseline run.
(For interpretation of the references to color in this legend, the reader is referred to the web version of the article.)
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assessed visually) while giving the user some control over the process
by enabling grouping of likelihood components. In the case of ling in
Icelandic waters, the main difficulty inherent in the data was the rapid
increase in the survey index values in recent years and the resulting
large CV of these indices from that period. This problem, however is
unlikely to change with the modeling framework, and given the de-
crease in the last five years of the smaller length groups in the data
series, this may resolve itself in coming years.

Most parameters were well-defined except for some growth para-
meters, which had little influence on model results, and selectivities
related to gillnets. Catches from gillnets have been decreasing in recent
years, so data are limited from this fleet. For example, catches in gill-
nets were around one-third to one half of ling catches in 2000–2001,
but have now decreased to around 7% of Icelandic commercial catches
in 2016 due to changes in fleet dynamics and regulations. Therefore, it
is likely that the gillnet selectivity model is misspecified due to un-
accounted for changes through time, but these problems are of minor
importance in the current fishery and this likely has little effect on
model results.

With a lack of consistent and reliable age data, as was the case in
this study, fitting an integrated size- and age-structured models was an
appealing alternative to many age-based methods, which could have
required extrapolations of age structure from the survey to commercial
fleets, as well as back in time to periods lacking sufficient age data.
Following such procedures could introduce bias or autocorrelation into
model estimates by supplying erroneous information regarding somatic
growth. Meanwhile, using simpler production-based methods may
prevent the introduction of bias related to somatic growth processes,
but may not be as sensitive to stock dynamics (Magnusson and Hilborn,
2007) and would disregard the valuable information on stock dynamics
contained within compositional data (Wetzel and Punt, 2011; Ono
et al., 2015). Species that routinely lack age data, such as invertebrate
species, are often assessed using size-structured models, similar to the
one presented here, sometimes with tag-recapture data informing the
time-scale of population dynamics (Punt et al., 2013, 2016). However,
recent studies have suggested that the utility of size-structured models
is not limited to species with no age data. For example, a simulation
study using a data-rich scenario indicated that size- and age-structured
models tended to outperform age-structured models in terms of model
fit and relative error of management reference points. It was concluded
that this likely stemmed from a greater influence of the population
dynamics mis-specification (i.e., age-based versus size-based dynamics)
rather than mis-specification of growth, which was evident in the size-
based model (Punt et al., 2017). Within an integrated age-structured
modeling framework, even limited amounts of additional length-fre-
quency data can notably improve the assessment, as Wetzel and Punt

(2011) observed in simulations. Furthermore, utilizing the greatest re-
solution available to discretize size data improves model performance,
even in age-structured models (Monnahan et al., 2016; Szuwalski,
2016). Given the technical constraints in discretizing age data to a finer
resolution than annual rings, it would not be surprising if size-struc-
tured models are able to outperform age-structured models simply
based on their ability to track population dynamics at a higher re-
solution, not to mention the greater availability of data with which to
parameterize such models, given the relative ease of collecting size data
in comparison to age data. There is however a balance to be sought as
higher resolution scale may introduce unwanted noise (Vandermeer,
1978) and it may increase computing time considerably.

Nonetheless, at present size- and age-structured models are rarely
used for management advice. Size data alone do not yield a time scale
onto which population dynamics can be mapped. Tracking both age and
size in a population dynamics model can be highly computationally
demanding (Punt et al., 2016), and size-structured stock assessment
modeling packages are few and far between (but see CASAL2 Doonan
et al., 2016, for an exception). Integrated age-structured methods that
incorporate length frequency data, such as Stock Synthesis (Methot,
2013) and MULTIFAN–CL (Methot, 2013), work sufficiently well for
many of stock assessment needs at hand. Scientists also often use si-
milar packages regionally, due to “historical and current culture of
stock assessment practice” (sensu Dichmont et al., 2016, p. 449). This
regional effect of stock assessment culture undoubtedly results in part
from the investment necessary to learn and/or teach on-site colleagues
how to use individual stock assessment models, many of which are
highly technical to run and diagnose, while sufficient numbers of
qualified analysts necessary for the assessment and review process lag
behind (Dichmont et al., 2016; Maunder and Piner, 2015). Therefore,
the utility of size- and age-structured models in contemporary stock
assessment is highly limited by the lack of widely used size- and age-
structured modeling packages (Dichmont et al., 2016). Furthermore, as
integrated models are increasingly developed to incorporate more
complex structures and diverse data sets, there likewise increases the
opportunity for data conflicts and hence a need for diagnostic proce-
dures (Maunder and Piner, 2017; Carvalho et al., 2017).

The stock assessment model used in this study to investigate the
effects of the various management decisions on the population dy-
namics of ling in Icelandic waters is no exception to these rules, but has
some significant advantages as well. As with other integrated assess-
ment methods, some advantages include that diverse data sources can
be used to inform the same processes (e.g., size-composition and tag-
ging data to inform growth), multiple processes are used to form pre-
dictions to which data are compared (e.g., both selectivity and growth
parameterizations affect size compositions), uncertainty can be more

Fig. 8. Distribution of equilibrium densities of
yield (left) and SSB (right) curves as a func-
tion of H, as estimated from bootstrap data
sets. The black solid curves with yellow
shaded regions indicate the median and
5–95% interquantile ranges, respectively. Red
lines indicate Hlim (vertical) and Blim (hor-
izontal). Black vertical lines indicate Hpa (da-
shed) and Hmsy (solid). (For interpretation of
the references to color in this legend, the
reader is referred to the web version of the
article.)
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accurately modeled and propagated throughout the modeling process,
and the effects of assumptions or data sets on model results are more
easily compared within a single framework (Maunder and Punt, 2013).
Gadget can use various types of data comparisons that can be included
in the objective function, including size distributions, age-length keys

or distributions, survey indices by length or age (as either abundance or
biomass), catch per unit effort data, mean length and/or weight at age,
tagging data and stomach content data. Some implemented options for
functional relationships, such as maturation, include dependencies on
both age and size, thereby allowing for dependency on only age or size

Fig. 9. Projected catches, spawning stock biomasses, and fishing mortalities resulting from select target harvest rates tested in initial simulations. The first panel row
also represents results obtained in the MSE (second set of simulations), as 0.18 was implemented as the harvest rate in the HCR and SSB never dropped below Btrigger

in projections. The black solid lines and yellow shaded regions represent the median and 5–95% interquantile ranges, respectively, of estimates obtained from
bootstrap replicates. Two examples of these replicates are shown as line trajectories to show variability among runs (solid vs. dashed). Projection years begin with the
vertical dotted line. Horizontal red and black dashed lines represent the limit and pa reference points respectively for SSB and F. (For interpretation of the references
to color in this legend, the reader is referred to the web version of the article.)
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by setting some parameters to 0 (thereby apparently setting it apart
from CASAL2 Doonan et al. (2016), for example). Growth and se-
lectivity are both size-based, thereby avoiding the difficulties of fitting
age-structured models to size composition data when the growth curve
includes a dependency only on age (Francis, 2016). Importantly, this
ability to handle length data directly means that age data are not a
requirement: they can be sparse or nonexistent. However, to obtain a
well-specified model, some information regarding the time scale of
somatic growth is desirable (e.g., tagging data). As in other integrated
approaches, a maximum likelihood approach can be used to find the
best fit to a weighted sum of the data sets (Begley and Howell, 2004).

Because most processes estimated within Gadget are size-based
(e.g., except aging and natural mortality), the model naturally reduces
to a size-structured model, in which no age data are necessary for fitting
the model. The same cannot be said for implementing an age-structured
model within Gadget, as growth and selectivity are currently not im-
plementable as age-based. However, an additional feature of Gadget
drastically increases its flexibility, which is an ability to construct
multiple “stocks” (with migration among them) and specifying any
parameters as stock-specific and time-varying (or not). Such flexibility
not only allows for more intuitive parameterizations of stock compo-
nents, such as differences between spatial segments, males and females,
or mature versus immature (the last of which was implemented in this
study), but could also allow for less common implementations, such as
the addition of growth platoons or cohort structure. For example, al-
though Gadget is essentially a size-based model, all size data could be
removed from the model by implementing age-based 'stocks’ that mi-
grate annually and unidirectionally, fixing length-based growth para-
meters (which would have no bearing on the fitting procedure) and
implementing constant (or even time-varying) selectivity for each
'stock’. As far as the authors are aware, this level of flexibility within a
package is otherwise only available in CASAL2 (Doonan et al., 2016). In
addition, because Gadget historically developed as an ecosystem si-
mulation framework (Stefánsson and Pálsson, 1997), it has additional
functionality with multi-species linkages via consumption models.

However, like many other implementations (Maunder and Punt,
2013; Dichmont et al., 2016), Gadget has limitations in its current
implementation. For example, it does not currently support models with
random effects, which would be useful when estimating a stock–-
recruitment relationship for a stock, it has a relatively long optimisation
time (Maunder and Punt, 2013, as it is not based on automatic differ-
entiation methods), and efforts at improving the accessibility of Gadget
by streaming model input, diagnostics, and simulation via R statistical
framework (R Core Team, 2017) are underway but not yet completed
(Elvarsson and Lentin, 2018). Due to issues related to the properties of
length distribution data discussed by Hrafnkelsson and Stefánsson
(2004) and Babak et al. (2007), model comparisons using Aikaike in-
formation criteria (as suggest by Punt et al., 2017) are not currently
considered feasible. Nonetheless, Gadget has been used as a basis for
management in a variety of cases, including tusk (Brosme brosme) in
Icelandic waters and hake (Merluccius merluccius) west of the Iberian
peninsula. If Gadget is to be used more widely, further validation of its
structural properties through simulation studies are desirable, similar to
the series that has developed through the wide usage of Stock Synthesis
(Methot, 2013), as listed by Dichmont et al. (2016).

Software initiatives that enable reproducible research have in recent
year become extremely popular, both with on-line hosting that allow
easy version control such as Github and Bitbucket, and literate pro-
gramming tools like knitr (Xie, 2014) and rmarkdown (Allaire et al.,
2017). In the spirit of these initiatives MFDB and Rgadget were de-
veloped which simplify the modelling process by abstracting compli-
cated data aggregation and model settings away from the user. While
these packages are in constant development they are considered to be at
a stage useful for the general modeler. In the development of these
packages the developers have attempted to follow recent trends in with
the R community collectively referred to as “tidyverse” (Wickham,

2017) by allowing the modeler to build a model in a sequence of simple
stages, each defining an attribute to the model. The authors hope that
these tools will encourage further model developments using the
Gadget and other size- and age-structured frameworks.
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