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Introduction

Fishery science deals with the analysis of the interactions

between fisheries and the ecosystem, possibly taking into

account economic and social aspects. In order to address

this task, data are collected, mainly through routine monitor-

ing programmes.

Data on marine fish populations traditionally come from a

variety of sources and contain considerable variability. The

data that are routinely collected from the ecosystem are

mainly obtained by sampling and measuring fish in various

types of surveys and from the fishery, in both cases by

recording the catches, effort and taking biological samples

from the catches. These biological samples routinely

include length measurements of individual fish, expensive

age measurements from a subset of these, and stomach

content analysis from an even smaller subset.

Much of the variation in the data translates directly into

uncertainty when modelling population dynamics, including

the assessment of fish stocks or stock projections (Gavaris

et al. 2000, Patterson et al. 2000). In particular, when

including species interactions, this may become increas-

ingly difficult because extremely variable stomach content

data need to be used (Stefansson 1998, Stefansson and

Palsson 1997a).

Many of the species, fisheries and interactions encoun-

tered appear to exhibit fundamentally different dynamics, 

requiring different models for each situation (one may need

different growth models or fleet selection for different

species/fleets). Similarly, sampling variation in different

datasets is notoriously difficult to model and this is reflected

in underestimates of uncertainty, as seen for example in

Patterson et al. (2001). There is thus not only a need to

incorporate a variety of different descriptions of processes

but also descriptions of a variety of different datasets.

Historically, different models of the population dynamics of

fish stocks have been able to utilise varying amounts of

available data. In recent decades, models have been devel-

oped to use the various datasets through likelihood compo-

nents when describing species, fleets and interactions in

models which can be quite disaggregated. This approach

involves an internal description of the underlying process

including a prediction of the data. The predicted data can

then be compared with the observations.

A computer program, Gadget (Globally applicable, Area

Disaggregated, General Ecosystem Toolbox), has been

developed to undertake such analyses in as objective a

manner as possible, using formal statistical modelling

approaches. The model presented in this paper is a statisti-

cal age-length structured model, based on the principles

laid out in Stefansson and Palsson (1997b) and imple-

mented using the Gadget modelling environment (Begley

Gadget is a statistical modelling framework that can be

used to assess individual fish stocks and to create

multispecies, multi-fleet and multi-area models. The

development of a complex multispecies model requires

understanding of the modelled single-species popula-

tion. Simple single-species models are essential in eval-

uating whether more complex models increase under-

standing of the population dynamics. In this paper,

Gadget is illustrated using a single-species case study

with two stock components on one area. Features of the

implementation include immature and mature stock

components, a maturation process, along with commer-

cial and survey fleets. Parameter estimation is done

using maximum likelihood based on a variety of

datasets. The estimated parameters relate to growth,

maturation, fleet selection, recruitment and the initial

population. The data types used to calculate the likeli-

hood include survey indices and biological samples

from the commercial catch and surveys. Optimisation of

the model, along with a protocol to estimate appropriate

weighting of the likelihood components, is described. A

range of different assumptions and estimation methods

are evaluated including the effect of reduced data avail-

ability on parameter estimation by excluding age data

from the likelihood components. 
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2005). This is a simple example of the use of Gadget to

describe a species consisting of two stock components,

immature and mature fish, in a single area that is fished by

one commercial and two survey fleets. Use of the program

to include more species and areas is described.

The Gadget environment has been developed to utilise

as many different types of fisheries data as possible, using

appropriate assumptions on each dataset. One of the prin-

ciples used here is to model the actual data collected in as

raw a form as possible. In particular, rather than massaging

age-length keys, length distributions, mean weights and

landings into catch-at-age data, each of these data sources

can be included in the model separately. For each type of

observed data a corresponding fitted dataset can be gener-

ated by Gadget, allowing for direct comparisons between

the modelled population and the observed population. As a

result, whether each model component provides an

adequate description of the corresponding dataset can be

evaluated. For some reason, issues in combining datasets

have largely been ignored in many assessment procedures

(e.g. Extended Survivor Analysis [XSA] (Shepherd 1999),

most Adaptive Framework [ADAPT] implementations

(Gavaris 1988) and even highly detailed time-series analy-

ses (Gudmundsson 1994). Notably, methods that combine

all commercial catch datasets into a single set of catches in

numbers at age ignore potential changes in selection due

to fleet composition. When all survey information is

combined across vessels into a single set of survey indices,

this ignores possible vessel effects, which might usefully be

removed by appropriate models.

The basic model is a forward simulation model, in which,

for a given set of parameters, the population can be

projected from initial values to obtain a population trajectory

for the time period of interest. Given such a trajectory,

values of the various data can be predicted and (negative

log) likelihood functions evaluated. The process is repeated

with different parameter values until the likelihood function

is maximised (negative log is minimised).

Models within Gadget can be fully parametric where the

specification of the parameters completely determines the

model output. Alternative models abound and one possible

exception within Gadget, used here, is to assume the total land-

ings are known without error and are directly removed from the

fishable biomass at the beginning of a simulation time step.

When fitting such a model to multiple datasets, several

technical questions need to be answered. Some of these are

common statistical questions, but others are fisheries-specific.

• Is it possible to estimate appropriate weights to be give to

different likelihood components? 

• Do initial values of parameters affect the solution? 

• Are all parameters (uniquely) estimable? 

• Do more likelihood components (more datasets) lead to a

‘better’ solution? 

• Should the weight for age-length frequency components

be based on the total size of the component or the

‘informative’ size? 

• Does the use of age data improve the solution? 

• Do subsequent optimisations improve the solution?

The examples on weighting issues given here may

appear specific to Gadget and this case study, but the

issues are, in reality, much more widely applicable to the

general class of non-linear models combining data sources.

When combining several datasets in a single objective

function, the relative weighting of the datasets has the

potential to influence the estimation of parameters. Different

datasets can provide different perspectives on the popula-

tion, especially within the context of a model. A method to

estimate the weights objectively is therefore an important

tool in the use of models of this type. The approach taken in

this paper is based on Stefansson (2003), but an alternative

approach might be the use of cross-validation to estimate

likelihood weights (Wang and Zidek 2005).

In this paper, the term ‘age-length frequencies’ refers to a

frequency table describing the observed number of fish meas-

ured of each age and length. Correspondingly, the ‘length

distribution’ (or ‘age composition’) refers to the observed

number of fish recorded at a certain length (or age). 

Gadget

The Gadget modelling environment

Models described here are implemented using the com-

puter program Gadget (Begley 2005), a derivative of

Bormicon (Stefansson and Palsson 1997b, Stefansson and

Palsson 1998, Björnsson and Sigurdsson 2003) and the

subsequent Fleksibest (Guldbrandsen Frøysa et al. 2002),

which uses concepts developed in earlier work such as the

multispecies model for the Barents Sea (MULTSPEC;

Tjelmeland and Bogstad 1989) and Multispecies Virtual

Population Analysis (MVPA; Helgason and Gislason 1979).

Gadget can be used to implement a wide variety of multi-

species models but only a few features are included in the

present case study.

Models implemented with Gadget are parametric statisti-

cal models with parameters that can be estimated using

maximum likelihood. Internally, such a model tracks the

number of fish by age and length within each area, time

step and stock unit. The model ecosystem of all such units

is projected deterministically forward in time (simulated),

resulting in a single realisation of the development of the

model ecosystem. A single such simulation results in a vari-

ety of information, including stock trends, mean length, etc.,

for each stock unit. These simulation results can be

compared with data through (negative logs of) likelihood

functions. A search algorithm can subsequently be used to

estimate values of the unknown parameters.

One or more fleets may remove biomass from the popu-

lation. In Gadget, a fishing fleet is commonly implemented

as a predator, done either through the use of a proportional

harvesting model (similar to fishing mortalities) or where the

total yield in weight is assumed to be known without error

(similar to consumption models). In neither case are

catches in numbers at age used nor age compositions

assumed to be without error.

Denote by Nalmsrt the number (N) of fish of species s, age

a, length l and maturity stage m, in region r and time step t.

This group of fish is a subset of the entire collection of fish

of a given species. Such a collection will be referred to as a

subpopulation (or substock). Mathematically, this is just a
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collection of numbers, but they are usually unknown and

need to be estimated using statistical techniques.  

Normally there are only two maturity stages within the

model, immature and mature fish (m = 0,1). In many cases

only a fixed species, area, time step and maturity stage are

considered and in this case such indices are omitted and

the notation is simplified to e.g. Nal.

Several processes can affect such a group of fish and

cause a change in numbers in the group. The change in

numbers can be either due to a transfer of fish between

groups or mortality. The various processes available as

model components in Gadget are listed briefly here, but a

more detailed description of most components used in the

present case study is given in the following section. Full

descriptions are available in Begley (2005).

Consumption
Predation causes mortality in the prey stock and can be

used to determine the growth of the predator. Some of the

Gadget implementations of predation are described in the

Appendix, but these are only implemented for the purpose

of fishing in the case study presented. 

Fishing 
Fishing can be implemented in several different ways in

Gadget (see Appendix). The time step is commonly quite

short, permitting a model describing a catch directly propor-

tional to biomass (in place of the common catch equation).

Alternatively, the fishing fleet can be modelled as any other

predator, and this is the approach used here. 

Migration
Migration is not used in the present case study. Within

Gadget, the migration a subpopulation undertakes on a

given time step can be described by matrices, 

containing the proportion aalmsr1r2t of the population of the

subpopulation that moves from area r2 to area r1 and R is

the number of areas. Hence, if u = (u1,...,uR)’ are abundance

numbers by area for an age-length-maturity-species group

in a subpopulation, the area distribution after the migration

has taken place is Aalmstu. 

Maturation
Maturation involves shifting fish from a subpopulation of

immature fish to a subpopulation of mature fish. This is

done using proportions (as in a migration process), which

are designed to mimic the resulting proportion of mature

fish in each age-length cell. A typical function describing

maturity at age and length in Gadget is 

(1)

where ψ1, ψ2, l50 and a50 are parameters to be determined

(fixed or estimated), and l50 and a50 are the length- and age-

at-50% maturity respectively. Naturally, several other matu-

rity functions could be used. 

Individual growth
Within population dynamics models, growth in length may

be implemented through growth in weight because the

weight increase is more naturally linked to consumption. In

this case, the target weight increase ∆W is a function of

consumption and fixing a length-weight relationship of the

form W = aLb can give an approximate average length

increase through, for example, a Taylor approximation.

Alternatively, as used in the present case study, the length

growth is according to a specified functional form (the von

Bertalanffy growth curve, see e.g. King 1995) and a length-

weight relationship is used to implement growth in weight.

Regardless of which method is used to compute ∆W, the

length increase ∆L needs to be implemented through an

update mechanism that moves fish between length-groups

in such a fashion that the average movement corresponds

to a length growth of ∆L. Growth in length is therefore

modelled through the use of growth update matrices that

are described in a parametric manner (see Appendix). 

Natural mortality
In addition to predation/fishing, ‘other’ natural mortality is

implemented in the usual fashion (as in Baranov 1918), viz. 

Ageing
The last time step of a year involves increasing the age by

one year, except for the last age-group which is a ‘plus

group’, containing all ages from the oldest age onwards. 

Spawning
A (mature) subpopulation may generate offspring and lose

biomass. This can also result in spawning mortality. It

follows that Gadget can be used for modelling a closed life-

cycle, but in this paper recruitment per year is estimated, as

is common practice in fisheries.

Data warehouse

Data input to Gadget is normally through a data warehouse,

which is used to store data at a minimally aggregated level (i.e.

highly disaggregated), as described in Kupca and Sandbeck

(2003) and Kupca (2005). In this case study, data from the

Marine Research Institute (MRI) database are aggregated

onto the subdivisions set out in Taylor (2005). Aggregations are

through simple arithmetic summaries (averages or sums, as

appropriate). Input data files and data files for use in the likeli-

hood can be extracted from the data warehouse with the user

defining the level of aggregation to be output.

Likelihood components

General Gadget likelihood components
Likelihood components on a negative log scale are used in

Gadget to compare the modelled population with observed

data. The most commonly used components are based on

the Gaussian density (sums-of-squared deviations) but

multivariate normal likelihoods are also available as well as

multinomial likelihoods.
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A typical use of a Gaussian likelihood is to compare

survey abundance indices with modelled population

numbers. The likelihood component for these data is the

sum of squares of a log-linear regression with the slope and

intercept estimated or with the slope fixed and only the

intercept estimated. 

(2)

where I is the observed survey index and N the correspon-

ding population abundance calculated in the model (both at

time t). When the slope β is fixed at β = 1, the intercept is

the standard catchability coefficient. Nonlinearity, however,

is frequently observed, and is taken care of by relaxing the

restriction on the slope.  

Many biological samples are counts data and can be

used as proportions. These include length distributions, age

compositions, age-length frequency tables, etc. Although it

is possible to use (negative log) multinomial likelihoods for

counts data, it is more common to use a sum-of-squares

likelihood function for proportions: 

(3)

where ρ is the proportion of the data sample for that

time(t)/area(or region r)/age(a)/length(l)/substock(s) combi-

nation, and π is the proportion of the model population for

that time/area/age/length/substock combination.

Naturally, there may be only a single area, species, etc.,

in which case the corresponding indices can be omitted.

Penalties
Estimation procedures may test parameter values outside

feasible ranges. Some such issues can be alleviated, e.g.

by working with recruitment only on log-scale, but in other

instances bounds need to be set on parameters. Gadget

permits the use of penalty functions and parameter ranges

for this purpose.  

One example of an infeasible situation is when there is

insufficient prey to satisfy the consumption equations for the

predators. A particular instance is when the available

biomass of a species is less than the catch subsequently

taken by the fleet. In this case, the predator is only allowed

a scaled version of the required biomass and a penalty is

added for this ‘understocking’ situation.  

A likelihood component describing ‘understocking’ is

given by the equation 

(4)

where U is the amount by which the required predation

exceeds the biomass available to the predators (under-

stocking) during a model simulation. Normally the power is

fixed at g = 2.  

Estimation issues

As noted by several authors (e.g. Methot 1989), consider-

able attention needs to be given to the weights attributed to

each negative log-likelihood component. Weights are calcu-

lated based on the method proposed by Stefansson (1998)

and Stefansson (2003). Initial parameters are chosen arbi-

trarily, the only constraints being that there should be no

understocking (i.e. sufficient fish) and if survey index slopes

are to be estimated, the initial slopes are greater than zero

(i.e. the relationship between the survey and population is

increasing). With these parameters and all component

weights set to one, the sum of squares is calculated for

each component (the component likelihood score), the

inverse of these scores will be referred to as the ‘inverse

SS’. The total likelihood score with the inverse SS and initial

parameters therefore equals the number of components.

Results from an optimising run using the inverse SS are

compared with those from the iterative reweighting scheme

of Stefansson (2003) (referred to as the standard model).  

The reweighting scheme requires a separate optimising

run for each likelihood component. Each component is taken

in sequence, first the inverse SS of the component is multi-

plied by 10 000, and an optimising run is done to minimise

the negative log-likelihood function with the result for this

particular negative log-likelihood component taken as a

measure of how well the model can best fit to this dataset.

The number of terms (degrees of freedom) in the compo-

nent is then divided into the best (minimum) value and used

as a variance estimate, to become (after inversion) the final

weight for this component. Whereas the number of terms is

easily determinable for some likelihood components, such

as survey indices, it is less clear how many should be

assigned to data types such as age-length frequencies for

which many values are expected to be zero. In these exam-

ples, two possibilities are considered for age-length frequen-

cies: the degrees of freedom were either taken to be the full

size of the dataset or the number of potentially informative

length cells for each year/step/age cell, i.e. the ‘informative’

size. For all other data types, the total size of the dataset is

used. Because there is only one datum for each survey

index in each year, given annual recruitment parameters, it

is possible for the model to fit perfectly to these components.

To circumvent this, the equivalent spring and autumn

indices are weighted simultaneously.

Optimisation in the iterative reweighting scheme involves

the sequential use of Simulated Annealing and Hooke and

Jeeves. Once these have been undertaken, the weights

have been estimated. For the subsequent parameter esti-

mation runs, optimisation consists of two optimisation runs,

each a combination of Simulated Annealing followed by

Hooke and Jeeves. The aim of the first run is to move the

parameters into the vicinity of the solution and the second is

a more precise run. The two-run approach also allows for a

second global search (Simulated Annealing) if the first opti-

misation moved the solution into a local minimum. For

model comparison, the second Hooke and Jeeves run must

always find a solution with a step length of 1e–5. 
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A Case Study

Cod in Icelandic waters

The primary case study in this paper models two stock

components of cod, i.e. mature and immature cod, in Icelandic

waters which is considered a single area. This study illus-

trates biological assumptions that need to be made and

encompasses several statistical estimation issues.

A ‘standard run’ is chosen, against which alternatives

are compared. This run fixes the slopes in the log-log rela-

tionship between indices and abundance to unity and

uses the complete iterative reweighting scheme described

earlier. Here, the reweighting is based on the use of esti-

mated variances using simply the total number of data

points in each dataset. Parameter estimation is started

from an arbitrary set of initial values. All likelihood compo-

nents are used, including age data in the form of age-

length frequencies.

A range of alternative model formulations must be evalu-

ated. The purpose of these is to compare a variety of differ-

ent assumptions and estimation methods. As mentioned

above, the slopes can be either fixed to unity or estimated.

Weights can be allocated to the likelihood components

in several ways. First, the proposed iterative reweighting

scheme can be used, but a simple scheme that uses the

inverse of the initial likelihood component scores as

weights can also be used. This latter scheme ensures that

all initial scores are on a similar scale and is therefore a

plausible approach to avoid individual datasets dominating

the minimisation. Next, when considering the age-length

frequencies, it is noted that these contain many zeros and

it is therefore reasonable to reduce the effective number

of degrees of freedom to the ‘informative’ sample size.

Starting parameter values can be either from some arbi-

trary initial values, or from a judiciously chosen starting

point from an earlier estimation run. Finally, it is of interest

to consider the effect of not using any age information

directly, because this corresponds to the common situa-

tion where no age readings are available. These various

model formulations are described in Table 1. 

Further, when using the estimation protocol described

earlier (see Estimation issues), several questions need to

be addressed: (1) Is it possible to estimate appropriate

weights objectively? (2) Do the starting parameters affect

the solution? (3) Are age data required in the objective func-

tion? (4) Can the power in the survey index be estimated

and does it affect the results? (5) Should the weighting of

age-length frequency (ALF) components reflect the total

component size or the informative size?

In addition, if growth, maturation, selection patterns and

the structure of the initial population are considered known,

which data types are required in the objective function to

estimate recruitment and a scaling multiplier for the initial

population? To address this, the parameters estimated from

the standard model are used as input values for three opti-

misation runs with three alternative objective functions: (1)

with only survey indices, (2) with indices and length distri-

butions and (3) with indices, length distributions and age-

length frequencies. 

Data collection

Biological data are collected by the MRI in Reykjavik as a

part of a standard monitoring programme and data on land-

ings are collected by the Directorate of Fisheries. In both

cases, all data are stored in Oracle databases. For ease of

extraction for use in Gadget, these data have been aggre-

gated and stored in the data warehouse described earlier.

The data of interest to the current case study are: 

• Landings data by species, fleet and month 

• Age, length and maturity measurements from survey and

biological sampling of the catch 

• Survey indices

Data and likelihood functions

As indicated in Stefansson (1998), a statistical multispecies

model can be based on a variety of different data summaries,

but care must be taken not to use the same information

twice, e.g. both through mean length at age and as length

distributions with age-length frequencies. These data should

also be direct observations rather than processed or mod-

elled data.

It is important to aggregate the data to a level at which

coverage of the selected length/age interval is adequate, as

zeros are taken to mean zero. Time steps with low sampling

or sampling restricted to a limited range of length-/age-

groups may result in zeros that are an artefact of sampling

and unrepresentative of the population. This is true for all

Table 1: Conditions in the standard model and the alternatives (Alts). The slopes of the regressions can either be fixed (F) or estimated (E) for

Length-groups 1 and 2; weights can be inverse (I), using all weights with the age-length frequency (ALF) scaled by the total size (T), using all

weights with the ALF scaled by the informative size (R) or with the ALF weight set to zero (0); the initial parameters can be arbitrary (A), optimised

values from the inverse SS run (B), optimised values from the standard run (C), optimised values from the inverse SS run for Alt1 (D) (i.e. the equiv-

alent model with the slopes fixed) or arbitrary with the growth parameter k fixed (G); and the components can be all (L) or with no age data (K)

Parameter Standard Inverse Alt 1 Alt 2 Alt 3 Alt 4 Alt 5 Alt 6 Alt 7 Alt 8      

Slopes  F  F  F  E  E  F  F  E  E  E  

Weight  T I  R  T R  0 0 T R  T

Initial  A A A A A A G  B  D  C  

Components L L L L L K  K  L L L
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likelihood components. Another consideration is that using

a finer resolution can result in noisier data.

The data used in the current analyses consist of measure-

ments from commercial catches and two groundfish surveys.

Not all months have measurements for all fleets and, in partic-

ular, the groundfish surveys each occur only in a single

month. Each of these datasets is linked to the model through

a likelihood component. Given the problems inherent in

mixing likelihood components corresponding to different prob-

ability distributions and, in particular, the known problems with

a multinomial distribution being inadequate for length distribu-

tions (Hrafnkelsson and Stefansson 2004), only normal distri-

butions are used and each negative log-likelihood component

is simply a (weighted) sum of squares. For a particular data

type, such a sum of squares will be referred to as a negative

log-likelihood component or ‘likelihood component’ when

unambiguous. The observed data used in the likelihood

components will be referred to as ‘likelihood data’.

Data used in the case study are:

Input data
• Landings data obtained from the database of the Direc-

torate of Fisheries 

Biological sampling likelihood data
• Length distributions, aggregated on 2cm intervals from: sea

and harbour sampling of commercial catches by month

from 1984 to 2003; the spring groundfish survey (Palsson

et al. 1989) from 1985 to 2003; the autumn groundfish

survey (Sigurdsson et al. 1997) from 1995 to 2003.

• Age-length frequencies, aggregated on 4cm intervals

from: commercial catches by month from 1984 to 2003;

the spring groundfish survey from 1989 to 2003; the

autumn groundfish survey from 1995 to 2003. Age data

from the spring survey have only been used from years

with random otolith sampling. 

• Age compositions from the spring groundfish survey from

1989 to 2003 and from the autumn groundfish survey

from 1995 to 2003. Age data from the spring survey have

only been used from years with random otolith sampling.

These likelihood data are of the same class — biological

sampling — with all ages aggregated for the length distribu-

tions and all lengths aggregated for the age compositions.

The age-length frequencies and age compositions are used

directly because otolith sampling is random (not stratified

by length). The age compositions are not used for parame-

ter optimisation, but the fit of the model to these data is

used for model comparison. The sum-of-squares likelihood

function is given by Equation 3.

Stock composition likelihood data
• Proportion mature at length in 2cm length-classes from

the spring groundfish survey (Palsson et al. 1989) from

1985 to 2003.
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Figure 1: Length distributions from the spring groundfish survey, 1992–1995, with vertical lines indicating the length-groups within which the

data are aggregated to calculate the survey indices
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This groundfish survey is undertaken at a time when the

maturity stage is easily determined and is unaffected by the

potential biases owing to targeting of the mature stock

component by the commercial fleet. Although the matura-

tion process in Gadget can be age and length dependent,

in this case study only length is taken into account and the

data are aggregated over all ages.

The sum-of-squares likelihood function for this compo-

nent is given by Equation 3.

Survey index likelihood data
Three indices are calculated from each survey by splitting

the length distribution into three groups, with the division

based on the ‘typical’ structure of the length distribution for

the survey over all years. These length-groups represent

Age 1, Age 2 and Age 3 and older. Figure 1 illustrates the

length-groups over which data are aggregated for the

spring survey for a selection of years.

Age data are not used as indices as there is greater

potential for age sampling to introduce sampling bias.

Whereas calculating number at age by combining age and

length data might reduce sampling bias, it involves process-

ing likelihood data. Disaggregation of the length distribution

does not need to be based on an assumed age structure

but equivalent indices allow data from the two surveys to be

linked. This is explained more fully earlier (see Estimation

issues). An additional consideration is that disaggregating

indices by length rather than age allows more flexibility

when modelling populations where ages are poorly deter-

mined or unavailable.

Two sets of indices are calculated: 

• Three survey indices from the spring survey (Palsson et
al. 1989) (Figure 2) with one datum for each group for the

years 1985–2003. 

• Three survey indices from the autumn survey (Sigurdsson

et al. 1997) (Figure 2) with one datum for each group for

the years 1996–2003. The first year of the survey con-

tained fewer stations and is not included in the index.

In this case study, Equation 2 is used with the slope

always fixed to 1 for the third length-group, because for fish

of this length the survey index is considered to be linearly

related to the population abundance. When β = 1, the inter-

cept has the interpretation of log-catchability.

In Figures 2 and 3 it can be seen that for Length-groups 1

and 2, the surveys provide similar information for the over-

lapping years (correlations of 0.86 and 0.94 for Length-

groups 1 and 2 respectively), but if the entire time-series is

considered, there is conflicting information from the third

length-group (correlation of –0.10). The Length-group 3

data are in two groups, within both of which there is a log-

linear relationship between the surveys (i.e. 1994–1997

plus 1999 and 2000–2002 plus 1998). This may indicate a

change over time of the relative catchability of larger (or

older) fish in the spring and autumn surveys.  

For both the spring and autumn surveys, there is a strong

positive relationship between Length-group 1 and 2 indices,

as indicated in Figure 4, with correlations of 0.90 and 0.86

for the spring and autumn surveys respectively. These

results support the assumption that the Group 1 and 2

indices represent cohorts.

It should be noted that a particularly simple sum of

squares is used as the negative log-likelihood in all cases.

There are several reasons for this, all somewhat technical.

The use of sums of squares in this manner is numerically

equivalent to assuming that the corresponding (possibly

transformed) data are Gaussian. It is known that consider-

able deviations from this assumption are tolerated, still

giving reasonable point estimates. However, this is not a

general rule. Thus, although a multinomial distribution may

appear a more reasonable assumption for length distribu-

tions (MacDonald and Pitcher 1979), it is well known that

this assumption is seriously flawed, not only through over-

dispersion (MacCall 2003) but also in correlation structure

(Hrafnkelsson and Stefansson 2002). The net effect of
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Figure 2: Survey indices for the spring and autumn surveys for

each length-group
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these incorrect assumptions is unknown and hence simple

sums of squares are used instead in this paper. It is clear

that these methods may be improved (e.g. by using multi-

variate Gaussian assumptions, cf. Elvarsson 2005), and

this is a promising route of future work.

Parameter settings and initial values

The model runs from 1984 to 2003 on one area with two

cod components — immature and mature. The immature

are aged 1–10 and the mature 3–12, with the final age

being a plus group. Immature fish mature according to the

maturation function and any not mature by the end of their

10th year move into the mature component. A single

commercial fleet operates along with two surveys.  

Length growth is defined by Equation App.2 with L∞ fixed

and k estimated within the model. The beta-binomial

parameter β is fixed to 1 000 with maximum length-group

growth n = 10. Weight growth is according to Equation

App.3 with different length-weight relationships for the

immature and mature components. The values of c and b

were calculated from survey data and subsequently fixed. 

The maturation process is based on tracking the matu-

rity function given in Equation 1. As maturation in this

case study is only a function of length, the age parameters

ψ2 and a50 are set to zero; l50, the length-at-50% maturity,

and the rate ψ1 are estimated within the model.

The number at age in the initial population (Ages 2–11) is

estimated within the model. To reduce the number of

parameters there are no fish in the Age 12+ group in the

first year. In some examples, the age structure of the initial

population is fixed and an estimated multiplier scales the

population abundance. The mean and standard deviation of

length of the initial populations were calculated from the

spring survey and output from the data warehouse. The

length-weight relationships used for weight growth were

also used for the initial population.  
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Figure 4: Scatter plots of the Length-group 2 index against the

corresponding Length-group 1 index for each survey on a log

scale. Each point is labelled with the cohort year
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Figure 3: Scatter plots of the autumn vs the spring survey indices

for each length-group on a log scale. Each point is indicated by the
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The number of Age 1 recruits for each year (1984–2003)

is estimated within the model. Mean and standard deviation

of length of the Age 1 recruits is calculated from the spring

survey for each year and output from the data warehouse,

with the mean length for 1985–1989 used as the mean

length for 1984.  

Natural mortality at age is given by a fixed vector: 0.5 and

0.35 for Ages 1 and 2, 0.2 for Ages 3–9 and 0.3, 0.5 and

0.7 for Ages 10–12.  

Selection by the surveys and commercial catch are

described by the suitability function in Equation App.6, with φ3

= 0, φ4 = 1 and φ1 and φ2 estimated for each fleet separately. 

Results

Parameter estimation and model evaluation of the standard

model are discussed in some detail, followed by compari-

sons of the alternative models.  

Standard model

The minimum sums of squares from the iterative reweight-

ing scheme described earlier (see Estimation issues) are

given in Table 2 for all negative log-likelihood components.

All the models with all survey regression slopes fixed to 1

are based on these initial runs.  

Table 2 illustrates the conflicting information, within this

Gadget implementation, from the different data sources.

For example, the minimum sum of squares of error (sse)

from weighting the spring survey length distribution (LDs)

is 0.045, whereas the same component has a score of

0.154 (a value 3.4 times greater) when the catch length

distribution is heavily weighted. In general, within the

same type of component (e.g. length distribution) there is

greater consistency between the surveys than between

either survey and the catch. Weighting the spring survey

Table 2: Minimum sums of squares from iterative optimisations with each column representing a run with that component heavily weighted.

The values in bold are the sums of squares of the heavily weighted component in each optimisation. These components are from the bio-

logical sampling likelihood components (LD — length distribution, ALF — age-length frequencies, AC — age composition, with s, c and a

indicating whether spring survey, catch sampling or autumn survey respectively), the ratio of immature to mature fish (mat) and the survey

indices (I). For the indices, Ii, i = 1,2,3 are the length-groups and the s and a subscripts indicate the spring and autumn surveys. The corre-

sponding length-groups of the surveys are weighted simultaneously

Component Mat LDs LDc LDa ALFs ALFc ALFa I1 I2 I3

Mat  32.47 65.73 37.17 78.84 41.94 44.68 42.06 36.71 34.96 47.51  

LDs 0.64 0.04 0.15 0.36 0.16 0.13 0.40 0.18 0.27 0.74  

LDc 12.84 4.49 0.89 12.06 7.98 1.94 9.63 10.05 5.53 12.28  

LDa 0.30 0.03 0.04 0.02 0.03 0.04 0.02 0.09 0.08 0.23  

ALFs 0.75 0.15 0.60 0.44 0.06 0.10 0.18 0.32 0.20 1.13  

ALFc 19.68 6.78 13.72 13.86 6.35 2.85 7.47 10.12 5.79 25.30  

ALFa 0.49 0.07 0.40 0.26 0.04 0.06 0.03 0.23 0.07 0.67  

ACs 2.60 0.36 1.12 1.32 0.09 0.31 0.91 0.69 0.91 3.57  

ACc 68.85 19.12 38.23 71.17 27.06 5.60 34.84 22.57 23.12 106.60  

ACa 1.90 0.07 0.66 0.51 0.05 0.15 0.04 0.37 0.28 2.32  

I1s 77.85 15.41 19.49 56.01 24.46 23.84 40.46 1.09 32.15 91.44  

I2s 43.84 16.48 17.84 41.18 28.41 27.70 41.57 2.08 0.03 40.95  

I3s 3.93 15.05 14.80 11.11 20.90 29.09 12.83 0.75 1.49 0.35

I1a 10.13 2.16 1.43 1.50 2.02 1.68 1.90 0.08 9.57 19.07  

I2a 12.46 1.70 1.30 1.35 1.56 1.78 1.66 0.88 0.03 6.36  

I3a 1.01 1.26 0.37 1.77 1.74 1.39 2.12 0.06 0.16 0.05
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Figure 5: Recruitment estimated from the iterative reweighting

procedure with Length-groups 1–3 of the survey data heavily

weighted 
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does not result in a large increase in the sse for the corre-

sponding autumn survey component (0.029 compared

with 0.023). Because the autumn survey does not cover

the entire time period of the spring survey, the reverse

comparison is invalid.

The difference in information deriving from the different

components is particularly large for the survey index data.

With the emphasis on Length-group 1 or 2, the fit to

Length-group 3 is relatively good. But there are clear incon-

sistencies between Length-groups 1 and 2.  

Being a plus group extending over at least 10 age-

groups, Length-group 3 is less informative with respect to

the recruitment pattern. This results in the scores for

Length-groups 1 and 2 being particularly high when the

emphasis is on Group 3. Figure 5 illustrates the difference

in predicted recruitment when emphasis is put on the

different survey length-groups. Groups 1 and 2 display

similarities (with a correlation of 0.73), but recruitment

predicted from Group 3 (the plus group) is unsurprisingly

quite different. It should be noted that Length-group 1

provides no information for 1984 because the first survey

datum is for 1985.

The initial inverse SS and the weights determined from

the iterative procedure are given in Table 3 along with the

ratio of the sum of squares from the final model to the mini-

mum for each component. As a result of incorporating infor-

mation from the different data sources, the final sse for

each component is typically greater than the minimum from

the iterative reweighting.  

The estimated parameters are shown in Figure 6 with

plots of the fitted log-linear regression in Figure 7. With a

Table 3: Component weights: the inverse minimum sums of

squares, the scaled weights calculated from the iterative reweighting

procedure and the ratio of the sum of squares from the optimised

model (ssef) to the minimum from the weighting run (ssem).

Abbreviatons as in Table 1

Component Inverse SS Scaled weights ssef :ssem

Mat  0.027 51 1.08  

LDs 3.256 28 930 2.26  

LDc 0.220 14 790 1.33  

LDa 10.049 24 658 0.90  

ALFs 5.411 107 860 1.24  

ALFc 0.223 17 538 1.07  

ALFa 9.328 112 387 1.07  

I1s 0.070 17 5.07  

I2s 0.850 54 1.94  

I3s 0.360 293 34.02  

I1a 0.206 553 67.03  

I2a 0.291 97 6.46  

I3a 3.685 157 2.54
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linear relationship assumed between the indices and popu-

lation abundance, the catchability (i.e. the intercept) of the

length-group increases with length for both surveys. In

addition, catchability is lower for the autumn survey, which

has fewer stations, than the spring survey. 

Evaluating the fit of the model to the data
An advantage of a statistical model is that the fit of the model

to the data can be assessed in detail. The negative log-likeli-

hood score by year, step and component can be plotted, as in

Figure 8 for the spring survey data and Figure 9 for the

commercial catch data, to determine whether there are any

patterns, e.g. trends in time. The use of autumn survey data

from 1995 onwards, given the degree of consistency between

data from the spring and autumn surveys, may contribute to

the downward trend in the survey age-length frequency and

age composition scores (Figure 8). On the other hand, apart

from the very high score for 1985, there is an increasing trend

for the length distribution residuals. The high scores for the

spring survey age data, and to a lesser extent the catch age

data in 1990 and 1991, indicate problems in modelling the

age structure in these years, although the corresponding
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sponding slope (fixed to 1 in this implementation) and sse for each survey index. Ln(I) is the index and a + b[ln(
^
N)] the fitted regression to

the modelled population
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Figure 9: Boxplots of the negative log-likelihood scores by year and step for the commercial catch components: length distribution (LD) and

age-length frequency (ALF)
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survey length distribution scores are relatively low. In some

years there is larval drift of cod from Icelandic waters to

Greenland, with migration back to Iceland several years later.

There is considered to have been a substantial migration of

fish from the 1984 year-class back into Icelandic waters from

Greenland in 1990 and 1991 (Shepherd and Pope 1993). The

large amount of immigration in 1990 and 1991 could account

for the relatively poor fit of the model to the age-length

frequency and age-composition data for these years, espe-

cially as the cod migrating from Greenlandic waters are

smaller at age than those resident in Icelandic waters. The

lessening importance of this period of immigration over time

might contribute to the decreasing trend in the likelihood

component score over the succeeding years. It is possible to

include immigration of this type in the model, but it has not

been considered in this simple case study. 

The model does not fit the catch likelihood data equally well

for all years, with higher negative log-likelihood scores for

1990–1996 for the length distribution (Figure 9). There is,

however, no pattern in the age-length frequency or any strong

season trend.

In addition to these summary scores, the residuals by

length can also be calculated, e.g. for the length distribution

using (py,s,l – πy,s,l) where py,s,l is the observed length distribu-

tion as proportions by year and step and πy,s,l the modelled

catch length distribution as proportions by year and step.  

This implementation of Gadget may be insufficiently

flexible to fully describe the length structure of the popula-

tion, as observed by the surveys. Figure 10 indicates that

the model tends to underpredict the number of fish

between 20cm and 30cm and overpredict the number of

fish over 80cm. This pattern is also influenced by the likeli-

hood function not taking the number of data in each

length-class into account. It is, however, to be expected

that the length distributions from the modelled population

will be smoother than those observed because samples

are affected by intra-haul correlation (Pennington and

Volstad 1994), with fish of a similar length being caught

together (Hrafnkelsson and Stefansson 2004). A model

with disaggregated fleets, cannibalism, or with growth

affected by consumption might improve the fit to the

length distribution data, as might variable growth rates for

different years or time periods.  

Model comparison

Models can be compared using the fit of the modelled

population to the observed data, e.g. through the total

negative log-likelihood scores for each component as

shown in Figure 11. A direct comparison is, however, only

statistically valid when the parameters estimated are the

same for all models. Figure 11 shows that Alternatives 6

and 7 give a considerable improvement in terms of the fit to

the survey indices for Ages 1 and 2. This is not surprising

because Alternatives 6 and 7 estimate the slopes of the

regression lines through these two datasets and thus have

more flexibility to accommodate these specific data.

Interestingly, the improvement in fit to these data has a

negative effect on the fit to several other datasets, in partic-

ular the age compositions (ACs, ACc and ACa, none of

which are used in the fitting procedure).  

Although diagnostic plots are useful and important, it is

also important to consider the difference in the population

dynamics as predicted by these models, e.g. as given by

the abundance or biomass (Figure 12). These plots give

one example of how these models differ from common

Virtual Population Analysis (VPA)-based models (Gulland

1965) in that the backwards convergence (Pope 1972,
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Figure 10: Length distribution residuals, by length-group, from the

spring and autumn surveys

�

 

/
�
2
%
�

�2532����

/)(�*(�*
�6)��
�6)� 
�6)�'

#

�

�

�

�

��
�
��

	
��

(

��
= �
��
= 	
��
= ( ��

�
��

�

��
( 4 �� 4 �� 4 #� 4 �( 4 �( 4 #(

Figure 11: The negative log-likelihood scores (sums of squares)

for four models: the standard model, and Alternatives (Alt) 1, 6 and
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Ulltang 1977) is not seen here. Rather, differences in model

behaviour appear as shifts throughout the entire time period.

Thus, the standard model consistently gives the highest

biomass level whereas Alternative 7 is consistently lower

(Figure 12).

Results from the iterative reweighting scheme and direct
use of inverse sums of squares
If the negative log-likelihood scores from the inverse SS

and standard runs are compared (Figure 13), the inverse

SS model is a better fit to the survey index data but the

standard run is a better fit to most of the sampling data, with

the greatest deviations for the largest components. This

reflects the difference in weighting the components using

the inverse SS alone or by taking the size of the dataset

into account as use of the inverse SS results in smaller

datasets having a disproportionately large influence. The

relative difference in the weights of the inverse SS and

standard models can be seen in Table 3.  

Weighting the age-length frequency
Two comparisons are made of the degrees of freedom used

to weight the age-length frequencies: the standard model

with Alternative 1, in which the survey power is fixed to 1

for all length-groups, and Alternatives 6 and 7 in which the

power is only fixed for Length-group 3. In both compar-

isons the fit of the model to the indices (Figure 11) is simi-

lar, but unsurprisingly the models with more weight on the

age-length frequencies result in a better fit to the commercial

catch components containing age data. The trade off is that

the fit of the model to the length distributions is slightly worse.

Total biomass estimated by Alternative 1 is 5.6% less

than for the standard model and the mean spawning stock

biomass is 11% less (Figure 12), with the mean percentage

difference in abundance of mature fish being 6.2%. The

difference between the biomass estimated by Alternatives 6

and 7 displays a similar pattern to that between the stan-

dard model and Alternative 1.

Estimation of the power in the survey index
The full iterative reweighting procedure was applied to five

models with the power of the index of survey Length-groups

1 and 2 estimated. Three starting parameters types were

used: arbitrary values (Alternatives 2 and 3), values esti-

mated from the inverse SS run (Alternatives 6 and 7) for the

equivalent model with the power term fixed and the final

values estimated from the standard model (Alternative 8).

The survey index minimum sums of squares from the itera-

tive reweighting scheme for the standard model and

Alternative 6 show that the greater flexibility of the model

reduces the inconsistencies between the survey length-

groups (Table 4).

Starting the procedure from the arbitrary parameter set

(Alternatives 2 and 3) fails to find a reasonable solution.
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Figure 12: End of year biomass trajectories for four models: standard,

Alternatives 1, 6 and 7 for: total (Age 1+) biomass, Age 4+ biomass

(considered the fishable biomass) and spawning stock biomass
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Figure 13: The difference in negative log-likelihood scores by

component between the standard and inverse SS models,

expressed as a percentage of the standard model [(inverse – stan-

dard)/standard] X 100. See Table 1 for component names
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From Alternative 2, the fit of the model to the spring survey

indices is very poor (Figures 14 and 15). The relationship

between Length-group 3 and the model is clearly negative

despite the slope being fixed to 1, and for Length-group 2

the slope is approximately 0 with positive indices. The fit of

the model to the autumn survey is considerably better

(Figure 14). Given arbitrary starting values the less con-

strained models have more difficulty finding a solution for

those years with only one survey than the equivalent

models with the slopes of the indices fixed.

Conversely, the optimised models with non-arbitrary start-

ing parameters optimise to solutions that fit the survey

Table 4: Minimum sums of squares from iterative optimisations for the standard run and Alternative 6, with each column representing a run

with that component heavily weighted. The values in bold are the sums of squares of the heaviliy weighted component in each optimisation.

Abbreviations as in Table 1

Minimum Standard fixed power Alternative 6 estimated power (1 and 2)   

sums of squares I1 I2 I3 I1 I2 I3

I1s 1.09 32.15 91.44  1.31 11.12 15.23  

I2s 2.08 0.03 40.95  4.74 0.06 7.26  

I3s 0.75 1.49 0.35 2.38 1.08 0.34

I1a 0.08 9.57 19.07  0.02 2.11 3.33  

I2a 0.88 0.03 6.36  2.38 0.01 2.38  

I3a 0.06 0.16 0.05 0.49 0.17 0.02
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Figure 14: Alternative 2: plots of the log-linear regression as estimated in Gadget, with one plot for each negative log-likelihood component

and the corresponding slope (estimated for Length-groups 1 and 2). Ln(I) is the index and a + b[ln(N
^

)] the fitted regression to the modelled

population
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indices better (with the exception of Group 3 of the autumn

survey) than the equivalent fixed-slope models, with little

impact on the fit to the other components (Figures 11, 16).

The model started from the end point of the standard run

(Alternative 8) shows the least difference. Slopes estimated

from the different runs show a similar pattern (Table 5),

demonstrating consistency in the optimisation despite the

differences in the models. 

Estimating the survey index power reduces the variation

in annual recruitment for the final years of the model.

Differences in all other parameters are negligible. In turn,

there is little impact on the population biomass (Figure 12).

The difference in biomass between the models with the

power fixed or estimated is predominantly towards the end

of the time-series (Figure 17), which is a period of the

model for which there is less information and fewer con-

straints on parameter estimation. The least difference is for

the model starting at the end point of the standard model

and the greatest difference for the models with lower

weights on the age-length frequency data.

Importance of starting parameters
The choice of starting parameters for the full estimation

procedure can affect the model optimisation, as demon-

strated by Alternative 2. With the power fixed, however,

the importance of the initial parameters is considerably

less. In addition, when the initial parameters are of the

correct order of magnitude, the resulting optimised models

are equivalent, even with the power estimated. The

mean difference between Alternatives 6 and 8 is only

0.41% and 0.44% for total and spawning stock biomass

respectively.

Use of age data
Two models were run without use of age-length frequency

data in the objective function: one equivalent to the other

models with the growth rate estimated (Alternative 4) and

the other with the growth rate fixed (Alternative 5).

Without age data, estimating the spring survey selection

pattern is a problem, but both models without age data esti-

mate the same selection pattern. Catch selection, which is
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Figure 15: Comparison of the relationship between the modelled

population and observed spring survey indices for the standard

model and Alternative 2
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Figure 16: Comparison of the total negative log-likelihood scores

by component for models with the power fixed vs models with the

power estimated. See Table 1 for component names

Table 5: Estimated slopes when predicting log-scale survey indices

Spring survey Autumn survey

Run Group 1 Group 2 Group 1 Group 2

Alt 6 1.98 1.70 1.77 2.10

Alt 7 2.03 1.75 1.84 2.21

Alt 8 1.99 1.69 1.73 1.97



African Journal of Marine Science 2007, 29(2): 223–245 239

more important for model dynamics (because it determines

the length distribution of removals by the fishing fleet) is

similar to that estimated by the other models. Because the

standard estimation procedure did not optimise for Alter-

native 4 (K estimated), a further run was done with an addi-

tional numerical optimising routine (BFGS, a quasi-Newton

gradient search method) subsequent to the standard opti-

misation method. This run converged to a solution similar

to that for Alternative 5 and with the growth rate K within

1.2% of the value estimated by the standard model.

Without age data in the objective function, the main devi-

ation from the standard model is in estimation of the initial

population abundance at age — parameters for which the

objective function contains little information. The resulting

biomass trends are lower (mean of 17% and 32% lower as

a percentage of the standard model for total biomass and

spawning stock biomass respectively), but follow the same

pattern as the other models. Comparing abundance rather

than biomass, the respective mean differences are 0.8%

and 20.4%.

Comparison of the negative log-likelihood component

scores for the standard model and Alternative 4 (which are

equivalent to those for Alternative 5) indicates that, without

being constrained by the age-length frequencies, the model

fit to most of the survey indices and the length distributions

is improved (Figure 18). Unsurprisingly, the model is,

however, a worse fit to most of the age data and Length-

group 3 of the spring survey.

Estimation of recruitment parameters

For a population with the growth, maturation and fleet selec-

tion parameters considered known, and with annual recruit-

ment and a scaling factor for the initial population being the

only estimated parameters, it might be considered that

fewer data types are required in the objective function. In

particular, models of this parameter structure might be used

to increase the time span of an existing model if there is no

reason to believe that the selection pattern of the fleet or the

growth rate of the population has changed. Three additional

models are used to consider this, each using the parameter

estimates from the standard model as initial values. The

objective functions contain either only survey indices, sur-

vey indices with three length distributions or survey indices

with three age-length frequencies.

The negative log-likelihood scores that differ most from

those of the standard model are from the model with only

survey indices in the objective function (Figure 19). As

would be expected, inclusion of the age-length frequencies

in the objective function produces a better fit to all the age

components than for the model with survey indices and

length distributions. In addition, the combination of length

distributions with the survey indices results in a consider-

ably better fit to the age components than for the indices

alone. When the only data in the objective function are the

length-disaggregated indices, the estimated recruitment

parameters display much greater deviation from the stan-

dard model parameter estimates and the total biomass

trajectory is markedly different (Figure 20).

The combination of age-length frequencies with the

indices generates higher population biomass levels than

that from the model combining length distributions with the

indices. As was shown in the comparison of age-length

frequency weights, use of the age-length frequencies (or
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Figure 17: Comparison of the total and spawning stock biomass of

models with the survey index power fixed or estimated. Plotted as

the difference in biomass as a percentage of the biomass pre-

dicted by the model with the power fixed
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Figure 18: The difference in negative log-likelihood scores by

component between the standard model and Alternative 4 (no age

data in objective function), expressed as a percentage of the stan-

dard model. See Table 1 for component names
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higher weights on the age-length frequencies) indicates

higher population biomass than the length data.

Clearly, the information on population structure in the

length and age-length frequencies is an important addition

to the survey indices when estimating annual recruitment.

Discussion

This paper has given examples of how one can parame-

terise a statistical fisheries model and estimate those

parameters using a formal statistical method. The case

study presented is a fairly simple one — a single-area

model of a stock with two components. This work should be

considered a prelude to much more complex models using

Gadget. A multispecies model within Gadget is built up from

single-species models, each of which should be fitted and

evaluated using the methods incorporated in this paper

before attempting to link them together.

A statistical model such as Gadget uses observed data

directly and hence any discrepancies between the model

and measurements of the population can be identified.

Identifying such discrepancies provides an opportunity to

improve the model and to assess the importance of increas-

ing the model complexity. As an example of this is, one can

consider the slope parameters in Equation 2 describing the

log-log relationship between stock and index. A simple

model using only catchability is indisputably simpler, but it

may not be adequate, as noted for example by Stefansson

(1992), as these slopes may be poorly estimated (DS

Butterworth, University of Cape Town, pers. comm. cited in

Stefansson 1992). The present results suggest that it is

possible to estimate the slope parameters from the begin-

ning of the estimation, but reasonable initial values of the

parameters are required. The model with slopes thus esti-

mated fits the survey indices better for Length-groups 1 and

2 than with the slopes fixed.

This formal approach of comparing models to individual

datasets also allows for comparisons not possible when highly

processed or aggregated data are used. In particular, using

the weighting schemes employed, it is possible to identify

inconsistencies between the model and datasets in a formal

manner. This is done by evaluating whether increased weight

on one dataset results in a considerably poorer fit to another

set. Similarly, one can evaluate simple questions such as

whether individual datasets are pulling results such as recruit-

ment estimates or biomass trends in different directions.

Placing heavier weights on the age-length frequencies

results in the model being a closer fit to the catch age-based

likelihood components and generates a slightly higher fish-

able biomass. Placing less weight on age data results in a

lower projected biomass. With no age data in objective func-

tion, the projected biomass is even lower. In general, models

that fit the catch age-length distribution better tend to contain

relatively more fish in older age groups.

Even with the selection pattern and growth fixed, inclu-

sion of length and/or age-length composition data in

the objective function improves the model parameter-

isation because these data contain additional information

on the population structure not available from the indices.
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Figure 20: The difference in negative log-likelihood scores by

component (as a percentage of the standard model) for the stan-

dard and subsequent models where the only parameters estimated

are recruitment and the initial population multiplier: Sl — survey

indices; LD — length distribution; ALF — age-length frequency
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Figure 19: The difference in negative log-likelihood scores by

component (as a percentage of the standard model) between the

standard and inverse SS models, where the only parameters esti-

mated are recruitment and the initial population multiplier. See

Table 1 for component names; Sl — survey indices; LD — length

distribution; ALF — age-length frequency
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Whereas it may seem reasonable, when only estimating

recruitment parameters, to restrict the data in the objective

function to survey indices, it is clear that for this population

(with this model structure), these data alone are insufficient.  

The examples come from a data-rich situation, but with

judicious use of available data the method is seen to be

promising for less data-rich environments. In particular, as

demonstrated in alternatives, the lack of age data does not

adversely affect estimates of recruitment or stock biomass

trends which are the most important outputs discussed with

respect to fishery management.

There are indications that these implementations are too

‘stiff’ with respect to growth. These issues may possibly be

resolved by disaggregating the commercial fleet and/or

allowing for variations in growth rate (both of which are

currently possible within the Gadget framework).

Gadget is a framework that is flexible in terms of the

structural models that can be developed and the range of

data types which can be included. In fact, although there

are several built-in functions to describe biological pro-

cesses such as growth and fleet selection patterns, new

functions can easily be added. Similarly, only certain likeli-

hood functions are used in the present paper, but other

options are available within Gadget and more could be

added. Different datasets may be available for different

stocks, and different growth, suitability or maturation func-

tions may be used for different species, but any species can

be in any role. This symmetric approach implies that each

species can take on the role of predator or prey, depending

on which other species are in the model, without changing

the computer program itself. This is fundamentally different

from several more traditional approaches where a single

model is implemented as a computer program that then

becomes tightly coupled to the exact system under consid-

eration. In all the works presented in Stefansson et al.
(1998), Tjelmeland and Bogstad (1998) and Mori and

Butterworth (2004), a fundamentally different (and applica-

ble) model is chosen for each species. Although this may

adequately answer each of the questions being asked, it

does not provide a general framework for modelling and

testing assumptions that Gadget provides.

As an extension to this work, there is a need to demon-

strate the method for the more complex multi-area case.

Extensions to more areas open up many possibilities, even

for the single-species case. Notably, a multi-area model can

explicitly take into account variation in growth rates and

area-dependent fleet behaviour, both of which can be diffi-

cult to encapsulate in a single-area model.

Additional future work involves formal methods for the

estimation of uncertainty. It has been shown here that there

are inherent problems in determining an adequate compos-

ite likelihood function or in defining correct weights to sums

of squares. It is therefore not a trivial issue to define a plau-

sible measure of uncertainty using Hessian-based methods.

For this reason, a bootstrap approach seems most promis-

ing for estimating uncertainty and this is in accordance with

preliminary simulations with Gadget (Hannesson et al.
2004) as well as other population dynamics/assessment

models (e.g. Gavaris et al. 2000).

The objective function (negative log-likelihoods) for each

dataset consisted of a simple sums of squares. The

reasons for this choice are given in the case study, but they

include serious problems with using common distributional

assumptions in likelihood functions, as noted by e.g.

Gavaris et al. (2000), Patterson et al. (2000), MacCall

(2003) and Hrafnkelsson and Stefansson (2004). Future

work should evaluate the benefits of using a multivariate

Gaussian assumption, and preliminary tests indicate that

this may be a considerable improvement on other assump-

tions (Elvarsson 2005). Such work needs to evaluate

whether alternative distributional assumptions really provide

better estimates, and this is probably best done using the

bootstrap methods outlined above. 
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Appendix: Growth, predation and fishing formulation

Basic Formulation of Growth

A simple growth model

In a multispecies context, growth in Gadget may depend on

consumption, but in simpler models it may be assumed to

follow a von Bertalanffy curve: 

(App.1)

Suppose fish of a given age a are of length l. Growth

according to Equation App.1 is then given by 

(App.2)

Growth in weight and growth in length can be assumed

linked and a length-weight relationship of the form 

(App.3)

used, where typically the power b is close to 3 and if b = 3,

the constant c is the condition factor.  

It should be noted that when l is greater than L∞, growth

becomes negative according to the growth equation. In this

case it is assumed that the fish do not grow further. In prac-

tice, L∞ is constrained to be greater than the maximum

length of the population.  

Also, the average growth of a group of fish needs to be

translated into a new distribution of these fish in the follow-

ing time step. This will be handled in subsequent sections.  

On updating length distributions

Fish population dynamics are modelled in MULTSPEC and

Gadget through forward simulations of fish populations,

allowing fish to migrate between areas, grow, mature,

spawn and die. The basic unit in these models is the

number of fish in a certain model unit or ‘cell’. The fish in a

‘cell’ are in the same age- and size-group, in the same

region and time step. When this basic model formulation is

used, the numbers in a ‘cell’ need to be updated during a

given time step, so as to reflect all processes being

modelled. In addition to growth, these processes include

migration, spawning, natural and fishing mortality.  

Starting with a specified average length increment (∆L),

fish need to be redistributed from their initial length-class

into upper length-classes in a reasonable manner. Simple

techniques may use only a few upper length intervals and a

simple ad hoc update scheme. The update scheme should

eventually be evaluated in terms of its ability to provide

adequate eventual length distributions. This sets some

immediate bounds on the dispersion at each time step,

because an overly high or low variance in the length update

will quickly result in inadequate final length distributions at

age for the oldest ages.  

The length update scheme can most easily be implemented

through a predetermined (from a distribution, e.g. multino-

mial) discrete set of ∆L-values to reallocate fish in an initial

length-group, when the desired average growth is to be ∆L.

This approach, used in earlier Bormicon, MULTSPEC and

Fleksibest implementations (Stefansson and Palsson

1997b), is undesirable for many reasons. First, the setup is

completely rigid because there is no built-in parameter to

describe possible deviations of growth from the specified

distribution and therefore data on growth may adversely

affect parameters in other parts of a complex model,

because of the incorrect specification of the rigid relation-

ship. Second, a simple discrete (rounded) lookup provides

a non-differentiable likelihood function that will result in esti-

mation problems later on (e.g. Guldbrandsen Frøysa et al.
(2002)).  

What is needed is a way to specify a flexible parametric

distribution with enough parameters to allow minimal flexi-

bility to track length distributions of an age-group, yet with

enough parsimony in parameters to make the parameters

involved estimable.  

Consider fish of a specified length, L, which are destined

to grow on average ∆L, according to the growth model. A

model for the update will assign probabilities pj of a fish in

the original cell growing by j length-groups. Denote the

absolute length increment corresponding to j length-groups

by δlj. These probabilities must then satisfy the obvious

restrictions 

Growth in weight

Because the approach described in this section is length-

based, the weight needs to be updated in synchrony with

the length increase. Consider, therefore, fish of length L

(with an average weight of W) that will increase in length to

L+δlj. Although it is possible to use Taylor approximations to

the length-weight relationship, as implemented in Bormicon,

a more internally and mathematically consistent approach is

to maintain length-weight relationships exactly. This can be

done by defining the upcoming weight increment of this

group of fish as 

The mean weight in the receiving group is subsequently

updated using prior and incoming numbers along with the

current mean weight in the group.  

The result of this approach is that, if fish start out so that

the length-weight relationship holds exactly for all length

cells, then this relationship is maintained throughout the

simulation.  

δ δw c L l cLj j
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A specific model for the length update

Although a first step might be to attempt to estimate individ-

ual probabilities pj, this would result in too many param-

eters. Another approach would be to estimate variance,

skewness and kurtosis and go from these to transition proba-

bilities, but there is no trivial transformation between the two.

A flexible probability distribution such as the 4-parameter

inverse lambda distribution could probably be used

(Ramberg et al. 1979), but parameter estimation tends to

be difficult. Similarly, a binomial distribution (or even a (trun-

cated) Poisson) can be used, but both are completely rigid,

because the value of ∆L completely specifies the single free

parameter in each of these distributions (assuming the

number of permissible length-group increments to be fixed).  

The beta-binomial distribution can be used as a simple

alternative. This approach can be formulated so as to

provide a single estimable parameter in addition to the

mean, which is specified by ∆L.

First consider the binomial distribution which is defined

for integers, x = 0,…,n by 

Using this probability distribution for the issue at hand, for a

given n, the other parameter p of this distribution is fully

defined because µ = np and the mean growth is given as

the specified ∆L, which fixes p = ∆L/n. Although this distri-

bution can certainly be used, it is clear that no flexibility is

allowed at all, and in fact it would be quite unlikely for such

a rigid distribution to satisfy the specified requirements of

attaining the correct final distribution of length-at-age.  

A common approach to more flexibility is to allow the

parameter p itself to come from another distribution, often

the beta distribution. The beta distribution is defined for

arbitrary values of α > 0 and β > 0 by 

(App.4)  

and it is known that the mean of this distribution is given by 

(App.5)

Thus, rather than using a fully specified binomial distribu-

tion, more flexibility is obtained by using this combined

beta-binomial distribution. This approach results in the

following marginal distribution of the length increments:  

It should be noted that in the case of growth by length-

groups within a short time interval, only low values of n and X

are needed and the above products become correspondingly

simple to generate. Probabilities can, therefore, be readily

generated from this beta-binomial distribution given specified

values of α, β and n. The latter (n) will usually be assumed

known, outside an estimation procedure.

It is also reasonably easy to see that the mean of the beta-

binomial distribution is given by 

If β is taken as a parameter to be estimated, the require-

ment ∆L = µ therefore implies  

This approach is implemented in Gadget by defining a

growth function with a single estimated parameter β.  

Alternative growth formulations

An alternative set of growth functions is obtained by basing

length growth on weight growth and computing weight

growth from consumption. In order to verify different meth-

ods of implementing growth, it is useful to be able to link

these approaches together, which can be done in Gadget

(Begley 2005).

The general case will involve consumption and therefore

growth in length and in weight will not always conform

strictly to a length-weight relationship. Notably, if fish do not

get enough food, they will typically lose weight but not get

shorter and this effect can be accounted for within Gadget

(but is not implemented in the case study presented). 

Predation, Including Fishing and Consumption

Although this paper does not include predation by fish, it

does include fishing operations which are modelled in the

same manner.  

In order to distinguish between predator and prey species

in an interaction, the following notations are used: 

s = a general species 

p = a prey species 

P = a predator species 

l = a prey length-group 

L = a predator length-group 

Accordingly, Nlp denotes the number of individuals of a prey

species p of length l and NLP the numbers in length-group L

of a predator P. The notation is solely for convenience

because there is no reason mathematically to exclude one

predator’s prey from being another species’ predator. When

fishing is implemented as predation, P is a fleet, in which

case L has no meaning.  

The consumption of a prey by a predator is defined

through the below-mentioned equations. Consider a fixed

area and time step so the notation can be simplified to indi-

cate only the length of predator and prey.  
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The suitability function SP,p describes the suitability of

length-group l of prey p as food for length-group L of preda-

tor P. This is usually viewed as a function of two variables,

the length of the predator and prey. A common suitability

function is 

(App.6)

where φ1–φ4 are parameters to be determined (or fixed at

specified values).  

For a fleet, the ‘suitability function’ in Equation App.6 is

simply proportional to a ‘selection pattern’ (Beverton and

Holt 1957, King 1995) as usually defined in fishery science

(see e.g. Section 5.2 in Stefansson and Palsson 1997b).

As a function of l, over the domain of prey length-groups,

the form of the suitability function can in principle be either

strictly increasing or dome-shaped, although Equation

App.6 is always increasing. In general, the function needs

to reflect the relative desirability of one prey size-group to

another for a given predator size-group.  

A suitability function for predation of a predator on a prey

could be given by 

(App.7)

with five parameters (η0 – η4) which allows for an asymmet-

ric relationship about the optimal predator:prey size ratio.

This is implemented in Gadget but not used in the case

study presented.  

The auxiliary function φP is defined by

(App.8)

where Ep is the energy content (in kJ kg–1) of the prey and dPp

is the preference of the predator for the prey (most commonly

dPp = 1). This simply weights the prey biomass according to its

suitability and is used to define the feeding level

(App.9)

where A is the biomass of prey required to allow the preda-

tor to consume half the maximum consumption.  

The target consumption can be considered as the amount

that a predator would consume of a prey, assuming that

enough food is available. The total target consumption

across all prey types is given by 

(App.10)

here T denotes area-specific temperature and the function

H is termed the maximum consumption, which is given by 

(App.11)

for constants m0–m3. Given the total across all prey types

being TP(L), then the amount that length-group L of predator

P will consume of length-group l of prey p is given by the

equation 

(App.12)

Although generic, the consumption formulae are only used

in the present paper to describe fishing, in which case a

simple model replaces TP(L) in Equation App.12 by the

observed landings.  

For each prey, an upper limit is set on the total amount

consumed by all predators, which restricts consumption to

a maximum of 95% of the available biomass. This is simply

implemented by scaling target consumption by all preda-

tors. A corresponding penalty is subsequently added to the

negative log-likelihood function when this occurs (see

Equation 4).  

Commercial catches can be implemented using the

predation procedure, by setting the target catch directly

equal to the observed catch and using the same scaling

mechanism as for (other) predators when prey biomass is

too low to sustain total predation (including catches).  

Alternatively, commercial or survey catches can be set to

be linearly related to the biomass of the preys. In this case,

the amount caught of length-group l of the prey p on the

area a and time step t by fleet P is  

(App.13)

(App.14)

where the effort measure Et,a is a parameter, c is a constant

and L is a number appropriate to scale the suitability func-

tion into a selection pattern for the fleet.
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